
140 AJTCCM VOL. 29 NO. 3 2023
CORRESPONDENCE: CASE
of haemolysis. The most common mechanism of schistocyte
development is marked anisopoikilocytosis secondary to ineective
erythropoiesis. It is also proposed that hyperhomocysteinaemia
has the potential to induce endothelial damage, driving red cell
fragmentation.[8]
is case highlights the importance of considering rarer causes
of TED in patients with young-onset and recurrent thrombosis. In
cases of hyperhomocysteinaemia, a vitamin B12 deciency should
be sought, and lifelong replacement therapy should be instituted to
prevent recurrence of TED.
In conclusion, in patients with young-onset and recurrent TED of
unexplained aetiology, hyperhomocysteinaemia secondary to vitamin
B12 deciency should be considered a possible cause.
L W Ndaba, MB ChB, FCP (SA), Dip Int Med (SA), Dip HIV (SA),
PG Dip Renal Med (UK)
Registrar, Department of Internal Medicine, Faculty of Health
Sciences, University of the Witwatersrand, Johannesburg, South Africa
ndabalw@gmail.com
S A van Blydenstein, MB BCh, DCH, MMed (Int Med), FCP (SA),
Cert Pulm (SA)
Department of Internal Medicine, Chris Hani Baragwanath Academic
Hospital, Johannesburg, South Africa
K E Hodkinson, MB BCh, MMed (Haem), FCPath (Haem)
Department of Molecular Medicine and Haematology, Faculty of
Health Sciences, University of the Witwatersrand and National Health
Laboratory Service, Johannesburg, South Africa
1. L W Ndaba, MB ChB, FCP (SA), Dip Int Med (SA), Dip HIV (SA), PG Dip Renal Med
(UK) ORCID for author Ndaba: https://orcid.org/0000-0002-2605-8134
2. Registrar, Department of Internal Medicine, Faculty of Health Sciences, University of
the Witwatersrand, Johannesburg, South Africa ndabalw@gmail.com
3. S A van Blydenstein, MB BCh, DCH, MMed (Int Med), FCP (SA), Cert Pulm (SA)
Department of Internal Medicine, Chris Hani Baragwanath Academic Hospital,
Johannesburg, South Africa
4. K E Hodkinson, MB BCh, MMed (Haem), FCPath (Haem) Department of
Molecular Medicine and Haematology, Faculty of Health Sciences, University of the
Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
5. Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous
and arterial thrombosis. Blood Transfus 2011;9(2):120-138. https://doi.
org/10.2450/2010.0066-10
6. Ekim M, Ekim H, Yilmaz YK, Kulah B, Polat MF, Gocmen AY. Study on relationships
among deep vein thrombosis, homocysteine & related B group vitamins. Pak J Med
Sci 2015;31(2):398-402. https://doi.org/10.12669/pjms.312.6049
7. Undas A, Brozek J, Szczeklik A. Homocysteine and thrombosis: From basic science
to clinical evidence. romb Haemost 2005;94(5):907-915. https://doi.org/10.1160/
TH05-05-0313
8. Marcucci R, Gori AM, Abbate R. Hyperhomocysteinemia: Cause or effect of
disease? Blood 2005;105(8):3382-3383; author reply 3-4. https://doi.org/10.1182/
blood-2004-12-4610
9. Fay WP. Homocysteine and thrombosis: Guilt by association? Blood 2012;119(13):2977-
2978. https://doi.org/10.1182/blood-2012-01-401513
10. Ray JG, Kearon C, Yi Q, Sheridan P, Lonn E; Heart Outcomes Prevention Evaluation I.
Homocysteine-lowering therapy and risk for venous thromboembolism: A randomized
trial. Ann Intern Med 2007;146(11):761-767. https://doi.org/10.7326/0003-4819-146-
11-200706050-00157
11. Homocysteine Lowering Trialists’ Collaboration. Dose-dependent eects of folic acid
on blood concentrations of homocysteine: A meta-analysis of the randomised trials.
Am J Clin Nutr 2005;82(4):806-812. https://doi.org/10.1093/ajcn/82.4.806
12. Ventura P, Panini R, Tremosini S, Salvioli G. A role for homocysteine increase in
haemolysis of megaloblastic anaemias due to vitamin B(12) and folate deciency:
Results from an in vitro experience. Biochim Biophys Acta 2004;1739(1):33-42.
https://doi.org/10.1016/j.bbadis.2004.08.005
Submitted 7 September 2022. Accepted 27 January 2023. Published 19 September 2023.
Afr J Thoracic Crit Care Med 2023;29(3):e285.
https://doi.org/10.7196/AJTCCM.2023.v29i3.285
Table1. Complete patient work-up*
Coagulopathy screen
Protein C (55 - 123 IU/dL) 66
Protein S (70 - 130 IU/dL) 74
Factor V Leiden mutation Negative
Prothrombin 20210A mutation Negative
Autoimmune screen
Intrinsic factor antibodies Positive
Antiparietal cell antibodies Positive
Anti-Sm antibodies Negative
Anti-ribonucleoprotein antibodies Negative
Anti-Sjögren’s syndrome antigen, A and B Negative
Anticardiolipin antibody Negative
Lupus anticoagulant Negative
Rheumatoid factor (<20 IU/mL) <10
Full blood count
Haemoglobin (13.4 - 17.5 g/dL) 8.2
Mean cell volume (83.1 - 101.6 fL) 105.1
White cell count (3.92 - 10.40 × 109/L) 4.29
Neutrophils (1.6 - 8.3 × 109/L) 2
Platelet count (171 - 388 × 109/L) 85
Liver function tests
Total bilirubin (5 - 21 µmol/L) 57
Direct bilirubin (0 - 3 µmol/L) 7
Coagulation
D-dimer (0.0 - 0.25 mg/L) 1.65
Anaemia work-up
Vitamin B12 (141 - 489 pmol/L) 37
Serum folate (8.8 - 60.8 nmol/L) 30
Haptoglobin (0.30 - 2.0 g/L) 0.01
Iron (9.0 - 30.4 µmol/L) 7.7
Transferrin (2.5 - 3.8 g/L) 2.22
Transferrin saturation (15 - 50%) 14
Ferritin (15 - 150 µg/L) 65
Reticulocyte production index 0.4
Other
Homocysteine (5.1 - 15.4 µmol/L) 20.1
Direct Coombs Negative
Lactate dehydrogenase (100 - 190 U/L) >2 500
HIV Negative
*e values in parentheses are the normal laboratory values.