Pulmonary hypertension and the potential of ‘drug’ repurposing: A case for African medicinal plants
Main Article Content
Abstract
Pulmonary hypertension (PH) is a haemodynamic disorder in which elevated blood pressure in the pulmonary circulation is caused by abnormal vascular tone. Despite advances in treatment, PH mortality remains high, and drug repurposing has been proposed as a mitigating approach. This article reviews the studies that have investigated drug repurposing as a viable option for PH. We provide an overview of PH and highlight pharmaceutical drugs with repurposing potential, based on limited evidence of their mechanisms of action. Moreover, studies have demonstrated the benefits of medicinal plants in PH, most of which are of Indian or Asian origin. Africa is a rich source of many medicinal plants that have been scientifically proven to counteract myriad pathologies. When perusing these studies, one will notice that some African medicinal plants can counteract the molecular pathways (e.g. proliferation, vasoconstriction, inflammation, oxidative stress and mitochondrial dysfunction) that are also involved in the pathogenesis of PH. We review the actions of these plants with actions applicable to PH and highlight that they could be repurposed as adjunct PH therapies. However, these plants have either never been tested in PH, or there is little evidence of their actions against PH. We therefore encourage caution, as more research is needed to study these plants further in experimental models of PH while acknowledging that the outcomes of such proof- of-concept studies may not always yield promising findings. Regardless, this article aims to stimulate future research that could make timely contributions to the field.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Attribution-Non Commercial International Creative Commons Attribution (CC-BY-NC 4.0) License. Under this license, authors agree to make articles available to users, without permission or fees, for any lawful, non-commercial purpose. Users may read, copy, or re-use published content as long as the author and original place of publication are properly cited.
Exceptions to this license model is allowed for UKRI and research funded by organisations requiring that research be published open-access without embargo, under a CC-BY licence. As per the journals archiving policy, authors are permitted to self-archive the author-accepted manuscript (AAM) in a repository.
How to Cite
References
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53(1):1801913. https://doi.org/10.1183/13993003.01913-2018
Thienemann F, Dzudie A, Mocumbi AO, et al. The causes, treatment, and outcome of pulmonary hypertension in Africa: Insights from the Pan African Pulmonary Hypertension Cohort (PAPUCO) Registry. Int J Cardiol 2016;221:205-211. https:// doi.org/10.1016/j.ijcard.2016.06.242
Hui-i G. The management of acute pulmonary arterial hypertension. Cardiovasc Ther 2011;29(3):153-175. https://doi.org/10.1111/j.1755-5922.2009.00095.x
SimonneauG.Updatedclinicalclassificationofpulmonaryhypertension.JAmColl Cardiol 2013;62(25 Suppl):D34-D41. https://doi.org/10.1016/j.jacc.2013.10.029
Hoeper MM, Humbert M, Souza R, et al. A global view of pulmonary hypertension.
Lancet Respir Med 2016;4(4):306-322. https://doi.org/10.1016/S2213-2600(15)00543-3
Mocumbi AO, Thienemann F, Sliwa K. A global perspective on the epidemiology of pulmonary hypertension. Can J Cardiol 2015;31(4):375-381. https://doi.
org/10.1016/j.cjca.2015.01.030
Idrees M, Butrous G, Mocumbi A, et al. Pulmonary hypertension in the developing world: Local registries, challenges, and ways to move forward. Glob Cardiol Sci Pract 2020;2020(1):e202014. https://doi.org/10.21542/gcsp.2020.14
Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM. Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 2020;141(8):678-693. https://doi.org/10.1161/CIRCULATIONAHA.116.022362
Toshner M, Spiekerkoetter E, Bogaard H, Hansmann G, Nikkho S, Prins KW. Repurposing of medications for pulmonary arterial hypertension. Pulm Circ 2020;10(4):2045894020941494. https://doi.org/10.1177/2045894020941494
Gessler T. Inhalation of repurposed drugs to treat pulmonary hypertension. Adv Drug Deliv Rev 2018;133:34-44. https://doi.org/10.1016/j.addr.2018.06.003
Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing medications for treatment of pulmonary arterial hypertension: What’s old is new again. J Am Heart Assoc 2019;8(1):e011343. https://doi.org/10.1161/ JAHA.118.011343
TheilmannAL,OrmistonML.Repurposingbenzbromaroneforpulmonaryarterial hypertension: Can channelling the past deliver the therapy of the future? Eur Respir J 2019;53(6):1900583. https://doi.org/10.1183/13993003.00583-2019
Maarman GJ. Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018;214:77-83. https://doi. org/10.1016/j.lfs.2018.10.039
Teichert-Kuliszewska K, Kutryk MJB, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: Implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006;98(2):209-217. https://doi.org/10.1161/01. RES.0000200180.01710.e6
Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;186(3):261-272. https://doi. org/10.1164/rccm.201201-0164OC
Gale S. The evolving treatment landscape of pulmonary arterial hypertension. Am J Manag Care 2021;27(3 Suppl):S42-S52. https://doi.org/10.37765/ajmc.2021.88610
McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension. Circulation 2002;106(12):1477-1482. https://doi.org/10.1161/01.
cir.0000029100.82385.58
Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: Prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 2017;50(2):1700740. https://doi. org/10.1183/13993003.00740-2017
SwisherJW,WeaverE.Theevolvingmanagementandtreatmentoptionsforpatients with pulmonary hypertension: Current evidence and challenges. Vasc Health Risk Manag 2023;19:103-126. https://doi.org/10.2147/VHRM.S321025
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018;175(2):168-180. https://doi. org/10.1111/bph.13798
Kantarjian HM, Cortes JE, Kim D-W, et al. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood 2014;123(9):1309-1318. https://doi.org/10.1182/ blood-2013-07-513937
Ahmed AA, Khaleel KJ, Fadhel AA. Potential effect of imatinib on some sex hormones for male patients of chronic myelogenous leukemia in Baghdad province. Bionatura 2021;6(4):2193-2195. https://doi.org/10.21931/RB/2021.06.04.9
Solinc J, Ribot J, Soubrier F, Pavoine C, Dierick F, Nadaud S. The platelet-derived growth factor pathway in pulmonary arterial hypertension: Still an interesting target? Life (Basel) 2022;12(5):658. https://doi.org/10.3390/life12050658
Frost AE, Barst RJ, Hoeper MM, et al. Long-term safety and efficacy of imatinib in pulmonary arterial hypertension. J Heart Lung Transplant 2015;34(11):1366-1375. https://doi.org/10.1016/j.healun.2015.05.025
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J 2017;50(3):1602449. https://doi.org/10.1183/13993003.02449-2016
Kawut SM, Archer-Chicko CL, DeMichele A, et al. Anastrozole in pulmonary arterial hypertension: A randomised, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 2017;195(3):360-368. https://doi.org/10.1164/rccm.201605- 1024OC
FengW,WangJ,YanX,etal.Paclitaxelalleviatesmonocrotaline-inducedpulmonary arterial hypertension via inhibition of FoxO1-mediated autophagy. Naunyn Schmiedebergs Arch Pharmacol 2019;392(5):605-613. https://doi.org/10.1007/ s00210-019-01615-4
ZhaoJ,YangM,WuX,etal.Effectsofpaclitaxelinterventiononpulmonaryvascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019;17(2):1163- 1170. https://doi.org/10.3892/etm.2018.7045
Zhang LL, Lu J, Li MT, Wang Q, Zeng XF. Preventive and remedial application of etanercept attenuate monocrotaline-induced pulmonary arterial hypertension. Int J Rheum Dis 2016;19(2):192-198. https://doi.org/10.1111/1756-185X.12304
Cheong HI, Farha S, Park MM, et al. Endothelial phenotype evoked by low dose carvedilol in pulmonary hypertension. Front Cardiovasc Med 2018;5:180. https:// doi.org/10.3389/fcvm.2018.00180
Hung MW, Yeung HM, Lau CF, Poon AMS, Tipoe GL, Fung ML. Melatonin attenuates pulmonary hypertension in chronically hypoxic rats. Int J Mol Sci 2017;18(6):1125. https://doi.org/10.3390/ijms18061125
Maarman G, Blackhurst D, Thienemann F, et al. Melatonin as a preventive and curative therapy against pulmonary hypertension. J Pineal Res 2015;59(3):343-353. https://doi.org/10.1111/jpi.12263
Wang R, Pan J, Han J, et al. Melatonin attenuates dasatinib-aggravated hypoxic pulmonary hypertension via inhibiting pulmonary vascular remodeling. Front Cardiovasc Med 2022;9:790921. https://doi.org/10.3389/fcvm.2022.790921
Ryan JJ. Chloroquine in pulmonary arterial hypertension: A new role for an old drug? Circ Cardiovasc Genet 2013;6:310-311. https://doi.org/10.1161/ CIRCGENETICS.113.000214
Trankle CR, Canada JM, Kadariya D, et al. IL-1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: A single-arm, open- label, phase IB/II pilot study. Am J Respir Crit Care Med 2019;199(3):381-384. https://doi.org/10.1164/rccm.201809-1631LE
Zamanian RT, Badesch D, Chung L, et al. Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: A multicenter, double-blind, randomised, placebo-controlled trial. Am J Respir Crit Care Med 2021;204(2):209-221. https://doi.org/10.1164/ rccm.202009-3481OC
Humbert M, McLaughlin V, Gibbs JSR, et al. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med 2021;384(13):1204-1215. https:// doi.org/10.1056/NEJMoa2024277
Grzegorzewska AP, Seta F, Han R, et al. Dimethyl fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci Rep 2017;7:41605. https://doi.org/10.1038/srep41605
Fujita H, Fukumoto Y, Saji K, et al. Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 2010;25(2):144-149. https://doi.org/10.1007/s00380-009-1176-8
Fukumoto Y, Matoba T, Ito A, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 2005;91(3):391-392. https://doi.org/10.1136/hrt.2003.029470
Michaels AD, Chatterjee K, de Marco T. Effects of intravenous nesiritide on pulmonary vascular hemodynamics in pulmonary hypertension. J Card Fail 2005;11(6):425-431. https://doi.org/10.1016/j.cardfail.2005.01.009
Mahomoodally MF. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evid Based Complement Alternat Med 2013;2013:617459. https://doi.org/10.1155/2013/617459
Verma S, Singh SP. Current and future status of herbal medicines. Vet World 2008;1(11):347-350. https://doi.org/10.5455/vetworld.2008.347-350
Unuofin JO, Otunola GA, Afolayan AJ. Polyphenolic content, antioxidant and antimicrobial activities of Vernonia mespilifolia Less. Used in folk medicine in the Eastern Cape Province, South Africa. J Evid Based Integr Med 2018;23:2515690x18773990. https://doi.org/10.1177/2515690X18773990
Van Wyk B-E. A review of commercially important African medicinal plants. J Ethnopharmacol 2015;176:118-134. https://doi.org/10.1016/j.jep.2015.10.031
BrownAC,ReitzensteinJE,LiuJ,JadusMR.Theanti-cancereffectsofpoi(Colocasia
esculenta) on colonic adenocarcinoma cells in vitro. Phytother Res 2005;19(9):767-
https://doi.org/10.1002/ptr.1712
Mohammed A. Hypoglycemic potential of African medicinal plants in diabetic
and non-diabetic human subjects: A review. Clin Complement Med Pharmacol
;3(2):100081. https://doi.org/10.1016/j.ccmp.2023.100081
Khumalo GP, van Wyk BE, Feng Y, Cock IE. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. J Ethnopharmacol 2022;283:114436. https://doi.org/10.1016/j.
jep.2021.114436
Cock IE, van Vuuren SF. The traditional use of southern African medicinal plants for the treatment of bacterial respiratory diseases: A review of the ethnobotany and scientific evaluations. J Ethnopharmacol 2020;263:113204. https://doi. org/10.1016/j.jep.2020.113204
De Wet CJ, Affleck DG, Jacobsohn E, et al. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg 2004;127(4):1058-1067. https://doi.org/10.1016/j.jtcvs.2003.11.035
Xiang L, Li Y, Deng X, Kosanovic D, Schermuly RT, Li X. Natural plant products in treatment of pulmonary arterial hypertension. Pulm Circ 2018;8(3):2045894018784033. https://doi.org/10.1177/2045894018784033
Xue Z, Li Y, Zhou M, et al. Traditional herbal medicine discovery for the treatment and prevention of pulmonary arterial hypertension. Front Pharmacol 2021;12:720873. https://doi.org/10.3389/fphar.2021.720873
Zeng Z, Wang X, Cui L, Wang H, Guo J, Chen Y. Natural products for the treatment of pulmonary hypertension: Mechanism, progress, and future opportunities. Curr Issues Mol Biol 2023;45(3):2351-2371. https://doi.org/10.3390/cimb45030152
Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43(12S):S13-S24. https:// doi.org/10.1016/j.jacc.2004.02.029
Chedea VS, Jisaka M. Inhibition of soybean lipoxygenases – structural and activity models for the lipoxygenase isoenzymes family. In: Krezhova D, ed. Recent Trends for Enhancing the Diversity and Quality of Soybean Products. IntechOpen, 2011:109-130. https://doi.org/10.5772/17976
Nworu CS, Akah PA. Anti-inflammatory medicinal plants and the molecular mechanisms underlying their activities. Afr J Tradit Complement Altern Med 2015;12(Suppl):52-61. https://doi.org/10.4314/ajtcam.v12i6.3S
Kim HP, Son KH, Chang HW, Kang SS. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 2004:96(3):229-245. https://doi. org/10.1254/jphs.crj04003x
Ajuwon OR, Oguntibeju OO, Marnewick JL. Amelioration of lipopolysaccharide- induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress. BMC Complement Altern Med 2014;14:392. https://doi.org/10.1186/1472-6882-14-392
Lee W, Bae J-S. Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation 2015;38(4):1502- 1516. https://doi.org/10.1007/s10753-015-0125-1
Ojewole JA. Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. J Ethnopharmacol 2006;103(1):126-134. https:// doi.org/10.1016/j.jep.2005.07.012
Zulfiqar F, Khan SI, Ali Z, et al. Norlignan glucosides from Hypoxis hemerocallidea and their potential in vitro anti-inflammatory activity via inhibition of iNOS and NF-κB. Phytochemistry 2020;172:112273. https://doi.org/10.1016/j. phytochem.2020.112273
ZhenJ,GuoY,VillaniT,etal.Phytochemicalanalysisandanti-inflammatoryactivity of the extracts of the African medicinal plant Ximenia caffra. J Anal Methods Chem 2015;2015:948262. https://doi.org/10.1155/2015/948262
Mwale M, Masika PJ. Analgesic and anti-inflammatory activities of Aloe ferox Mill. aqueous extract. Afr J Pharm Pharmacol 2010;4(6):291-297.
Nafiu MO, Salawu MO, Kazeem MI. 21-Antioxidant activity of African medicinal plants. In: Kuete V, ed. Medicinal Plant Research in Africa. Oxford: Elsevier, 2013:787-803. https://doi.org/10.1016/B978-0-12-405927-6.00021-7
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid
Redox Signal 2018;29(17):1727-1745. https://doi.org/10.1089/ars.2017.7342
LindseyKL,ViljoenAM,JägerAK.ScreeningofAloespeciesforantioxidantactivity. S Afr J Botany 2003;69(4):599-602. https://doi.org/10.1016/S0254-6299(15)30302-1
Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 2021;12:627837. https://doi.org/10.3389/
fphys.2021.627837
Mailloux RJ. Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longev 2018;2018:7857251. https://doi. org/10.1155/2018/7857251
Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol 2015;6:472-485. https:// doi.org/10.1016/j.redox.2015.09.005
Suliman HB, Nozik-Grayck E. Mitochondrial dysfunction: Metabolic drivers of pulmonary hypertension. Antioxid Redox Signal 2019;31(12):843-857. https://doi. org/10.1089/ars.2018.7705
Maarman GJ, Lecour S. Melatonin against pulmonary arterial hypertension: Is it ready for testing in patients? Cardiovasc J Afr 2021;32(2):111-112. https://doi. org/10.5830/CVJA-2021-008
Maarman GJ. Making a case for metallothioneins conferring cardioprotection in pulmonary hypertension. Med Hypotheses 2020;137:109572. https://doi. org/10.1016/j.mehy.2020.109572
Erukainure OL, Ijomone OM, Chukwuma CI, Xiao X, Salau VF, Islam MS. Dacryodes edulis (G. Don) H.J. Lam modulates glucose metabolism, cholinergic activities and Nrf2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. J Ethnopharmacol 2020;255:112744. https://doi.org/10.1016/j. jep.2020.112744
Kirindage KGIS, Fernando IPS, Jayasinghe AMK, et al. Moringa oleifera hot water extract protects vero cells from hydrogen peroxide-induced oxidative stress by regulating mitochondria-mediated apoptotic pathway and Nrf2/HO-1 signaling. Foods 2022;11(3):420. https://doi.org/10.3390/foods11030420
Sailaja BS, Aita R, Maledatu S, Ribnicky D, Verzi MP, Raskin I. Moringa isothiocyanate-1 regulates Nrf2 and NF-κB pathway in response to LPS-driven sepsis and inflammation. PLoS ONE 2021;16(4):e0248691. https://doi.org/10.1371/ journal.pone.0248691
XuC,DingC,ZhouN,RuanX-M,GuoB-X.ApolysaccharidefromAloeveraL.var. chinensis (Haw.) Berger prevents damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. J Functional Foods 2016;24:501-512. https://doi. org/10.1016/j.jff.2016.04.035
Osafo N, Boakye YD, Agyare C, Obeng S, Foli JE, Minkah PAB. African plants with antiproliferative properties. In: Farid AB, ed. Natural Products and Cancer Drug Discovery. IntechOpen, 2017: ch. 1. https://doi.org/10.5772/intechopen.68568
Kaigongi MM, Lukhoba CW, Yaouba S, Makunga NP, Githiomi J, Yenesew A. In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum Kokwaro (Rutaceae). Plants (Basel) 2020;9(7):920. https://doi.org/10.3390/plants9070920
Komakech R, Yim NH, Shim KS, et al. Root extract of a micropropagated Prunus africana medicinal plant induced apoptosis in human prostate cancer cells (PC-3) via caspase-3 activation. Evid Based Complement Alternat Med 2022;2022:8232851. https://doi.org/10.1155/2022/8232851
Gouws C, Smit T, Willers C, Svitina H, Calitz C, Wrzesinski K. Anticancer potential of Sutherlandia frutescens and Xysmalobium undulatum in LS180 colorectal cancer mini-tumors. Molecules 2021;26(3):605. https://doi.org/10.3390/ molecules26030605
Kim MO, Lee M-H, Oi N, et al. [6]-Shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2. Carcinogenesis 2014;35(3):683-691. https://doi.org/10.1093/carcin/bgt365
Shi Y, Pieniek M, Fard A, O’Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996;93(2):340-348. https:// doi.org/10.1161/01.cir.93.2.340
Frump AL, Lai YC, Lahm T. Assessing the cancer hypothesis of pulmonary arterial hypertension: The devil is in the detail. Am J Physiol Lung Cell Mol Physiol 2020;318(6):L1140-L1141. https://doi.org/10.1152/ajplung.00084.2020
Cho A, Mitchell L, Koopmans D, Langille BL. Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ Res 1997;81(3):328-337. https://doi.org/10.1161/01.res.81.3.328
Singh R, Gupta GA. Antimicrobial and antitumor activity of the fractionated extracts of Kalimusli (Curculigo orchioides). Int J Green Pharmacy 2008;2(1). https://doi.org/10.22377/ijgp.v2i1.393
Gaobotse G, Venkataraman S, Brown PD, et al. The use of African medicinal plants in cancer management. Front Pharmacol 2023;14:1122388. https://doi.org/10.3389/ fphar.2023.1122388
Messaoudene D, Belguendouz H, Ahmedi ML, et al. Ex vivo effects of flavonoïds extracted from Artemisia herba alba on cytokines and nitric oxide production in Algerian patients with Adamantiades-Behçet’s disease. J Inflamm (Lond) 2011;8:35. https://doi.org/10.1186/1476-9255-8-35
YunusaS,KuraAU,MagajiSY,LadanAA.Phytoconstituentsandin-vivoantioxidant activity of ethanol leaf extract of Moringa oleifera Lam (Moringacea) in mice. Acta Sci Pharm Sci 2019;3(3):43-47.
Mahmoud KB, Wasli H, Mansour RB, Jemai N. Antidiabetic, antioxidant and chemical functionalities of Ziziphus jujuba (Mill.) and Moringa oleifera (Lam.) plants using multivariate data treatment. S Afr J Botany 2022;144(5):219-228. https://doi.org/10.1016/j.sajb.2021.08.017
Zhang G, Bai R, Huang J, Gao Y, Yun X, Haji AA. Barbaloin attenuates pulmonary fibrosis through TGF-β1/Smads/p38 pathway. J Pharm Pharmacol 2022;74(8):1160- 1169. https://doi.org/10.1093/jpp/rgac023
Rakotomalala G, Agard C, Tonnerre P, et al. Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. J Ethnopharmacol 2013;148(1):106- 116. https://doi.org/10.1016/j.jep.2013.03.075
Jiang Y, Yang Y. Trifolium pratense isoflavones improve pulmonary vascular remodelling in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2016;100(6):1159- 1168. https://doi.org/10.1111/jpn.12424
Kapoor D, Vijayvergiya R, Dhawan V. Terminalia arjuna in coronary artery disease: Ethnopharmacology, pre-clinical, clinical & safety evaluation. J Ethnopharmacol 2014;155(2):1029-1045. https://doi.org/10.1016/j.jep.2014.06.056
Pawar R, Bhutani K. Effect of oleanane triterpenoids from Terminalia arjuna – a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine 2005;12(5):391-393. https://doi.org/10.1016/j.phymed.2003.11.007
Chen K-H, Chen Y-J, Yang C-H, et al. Attenuation of the extract from Moringa oleifera on monocrotaline-induced pulmonary hypertension in rats. Chin J Physiol 2012;55(1):22-30. https://doi.org/10.4077/CJP.2012.AMM104
Ahmadipour B. Securigera securidaca seed medicinal herb supplementation of diets improves pulmonary hypertensive response in broiler chickens reared at high altitude. J Anim Physiol Anim Nutr (Berl) 2018;102(6):1601-1607. https://doi. org/10.1111/jpn.12981
Fallon MB, Abrams GA, Abdel-Razek TT, et al. Garlic prevents hypoxic pulmonary hypertension in rats. Am J Physiol 1998;275(2):L283-L287. https://doi.org/10.1152/ ajplung.1998.275.2.L283
Han C, Qi J, Gao S, et al. Vasodilation effect of volatile oil from Allium macrostemon Bunge are mediated by PKA/NO pathway and its constituent dimethyl disulfide in isolated rat pulmonary arterials. Fitoterapia 2017;120:52-57. https://doi. org/10.1016/j.fitote.2017.05.007
Wang X, Cai X, Wang W, et al. Effect of asiaticoside on endothelial cells in hypoxia‐induced pulmonary hypertension. Mol Med Rep 2018;17(2):2893-2900. https://doi.org/10.3892/mmr.2017.8254
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Waterpipe smoke exposure triggers lung injury and functional decline in mice: Protective effect of gum Arabic. Oxid Med Cell Longev 2019;2019:8526083. https://doi.org/10.1155/2019/8526083
Iwu MM. Pharmacognostical profile of selected medicinal plants. In: Iwu MM, ed. Handbook of African Medicinal Plants. Boca Raton, Fla: CRC Press, 2014: ch. 3. https://doi.org/10.1201/b16292-4
Okem A, Southway C, Ndhlala AR, van Staden J. Determination of total and bioavailable heavy and trace metals in South African commercial herbal concoctions using ICP-OES. S Afr J Botany 2012;82:75-82. https://doi.org/10.1016/j. sajb.2012.07.005
Yun J, Finkel T. Mitohormesis. Cell Metab 2014;19(5):757-766. https://doi. org/10.1016/j.cmet.2014.01.011
Cordier W, Steenkamp V. Drug interactions in African herbal remedies. Drug Metabol Drug Interact 2011;26(2):53-63. https://doi.org/10.1515/DMDI.2011.011
Alolga RN, Fan Y, Zhang G, et al. Pharmacokinetics of a multicomponent herbal
preparation in healthy Chinese and African volunteers. Sci Rep 2015;5(1):12961.
https://doi.org/10.1038/srep12961
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7(2):27-31. https://doi.org/10.4103/0976- 0105.177703
Otieno JN, Hosea KM, Lyaruu HV, Mahunnah RL. Multi-plant or single-plant extracts, which is the most effective for local healing in Tanzania? Afr J Tradit Complement Altern Med 2008;5(2):165-172. https://doi.org/10.4314/ajtcam. v5i2.31269
Armendáriz-BarragánB,ZafarN,BadriW,etal.Plantextracts:Fromencapsulation to application. Expert Opin Drug Deliv 2016;13(8):1165-1175. https://doi.org/10.1 080/17425247.2016.1182487
Böke N, Kapiamba KF, Kimpiab E, Otor HO, Petrik L. Synthesis of bimetallic FeMn nanoparticles using rooibos tea extract: Characterisation and application. Int J Environ Sci Technol 2023;20:12741-12752. https://doi.org/10.1007/s13762- 023-04792-1
De Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021;143:112137. https://doi.org/10.1016/j.biopha.2021.112137
Ivanišová E, Kačániová M, Savitskaya TA, Grinshpan DD. Medicinal herbs: Important source of bioactive compounds for food industry. In: Ahmad RS, ed. Herbs and Spices: New Processing Technologies. IntechOpen, 2021: ch. 2. https:// doi.org/10.5772/intechopen.98819
Mazibuko-Mbeje SE, Dludla PV, Johnson R, et al. Aspalathin, a natural product with the potential to reverse hepatic insulin resistance by improving energy metabolism and mitochondrial respiration. PLoS ONE 2019;14(5):e0216172. https://doi.org/10.1371/journal.pone.0216172
Patel O, Muller CJF, Joubert E, Rosenkranz B, Louw J, Awortwe C. Therapeutic effects of an aspalathin-rich green rooibos extract, pioglitazone and atorvastatin combination therapy in diabetic db/db mice. PLoS ONE 2021;16(5):e0251069. https://doi.org/10.1371/journal.pone.0251069