The impact of mild COVID‐19 on medium‐term respiratory function

Main Article Content

J van Heerden
H Strijdom
A Parker
B W Allwood
U Lalla
C J Lombard
C F N Koegelenberg

Abstract





Background. There is a paucity of evidence on the impact of mild COVID‐19 on the respiratory system, particularly in non‐healthcare‐ seeking individuals.


Objectives. To investigate the effects of mild COVID‐19 on respiratory function and to identify indicators of decreased lung function.


Methods. We conducted a cross‐sectional study in 175 non‐healthcare‐seeking individuals with confirmed acute SARS‐CoV‐2 infection who did not require hospitalisation. Participants were divided into three groups: those who had pulmonary function tests (PFTs) within 6 months, between 6 and 12 months, and between 12 and 24 months after infection. Each participant underwent spirometry, measurement of the diffusing capacity of the lungs for carbon monoxide (DLCO), a 6‐minute walking distance test (6MWD) and plethysmography.


Results. The mean age of the participants was 44.3 years, and the mean body mass index (BMI) 32.7 kg/m2. Forty‐six participants had PFTs within 6 months, 64 between 6 and 12 months, and 65 between 12 and 24 months. Lower than expected DLCO was the most commonly detected abnormality (57%). Spirometry anomalies were noted in 23%, 10% showing an obstructive impairment and 13% a restrictive impairment, confirmed by a total lung capacity <80%. An increased BMI was the only variable that was significantly and independently linearly associated with lower than predicted (<80%) forced vital capacity, forced expiratory volume in the 1st second, DLCO and 6MWD.


Conclusion. DLCO was low in a considerable proportion of non‐healthcare‐seeking individuals 2 years after mild COVID‐19. A high BMI was found to be significantly and independently associated with lower than predicted PFT results and 6MWD.





Downloads

Download data is not yet available.

Article Details

How to Cite
1.
van Heerden J, Strijdom H, Parker A, Allwood BW, Lalla U, Lombard CJ, et al. The impact of mild COVID‐19 on medium‐term respiratory function. Afr J Thoracic Crit Care Med [Internet]. 2024 Oct. 14 [cited 2024 Dec. 10];30(3):e1629. Available from: https://samajournals.co.za/index.php/ajtccm/article/view/1629
Section
Original Research: Articles

How to Cite

1.
van Heerden J, Strijdom H, Parker A, Allwood BW, Lalla U, Lombard CJ, et al. The impact of mild COVID‐19 on medium‐term respiratory function. Afr J Thoracic Crit Care Med [Internet]. 2024 Oct. 14 [cited 2024 Dec. 10];30(3):e1629. Available from: https://samajournals.co.za/index.php/ajtccm/article/view/1629

References

1. Liu Y, Kuo R, Shih S. COVID‐19 : The first documented coronavirus pandemic in history. Biomed J 2020;43(4):328‐333. https://doi.org/10.1016/j.bj.2020.04.007

2. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID‐19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020;20(4):425‐434. https://doi.org/10.1016/S1473‐3099(20)30086‐4

3. Bretas DC, Leite AS, Mancuzo EV, et al. Lung function six months after severe COVID‐19 : Does time, in fact, heal all wounds? Braz J Infect Dis 2022;26(3):102352. https://doi.org/10.1016/j.bjid.2022.1023524. Zhang H, Li X, Huang L, et al. Lung function trajectories in covid 19 survivors after discharge: A two‐year longitudinal cohort study. EClinicalMedicine 2022;54:101668. https://doi.org/10.1016/j.eclinm.2022.101668

5. Frija‐Masson J, Debray MP, Gilbert M, et al. Functional characteristics of patients with SARS‐CoV‐2 pneumonia at 30 days post infection. Eur J Respir Med 2020;56(2):2001754. https://doi.org/10.1183/13993003.01754‐2020

6. Huang Y, Tan C, Wu J, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res 2020;21(1):163. https://doi. org/10.1186/s12931‐020‐01429‐6

7. Zhao Y, Shang YM, Song W, et al. Follow‐up study of the pulmonary function and related physiological characteristics of COVID‐19 survivors three months after recovery. EClinicalMedicine 2020;25:100463. https://doi.org/10.1016/j. eclinm.2020.100463

8. Wu X, Liu X, Zhou Y, et al. 3‐month, 6‐month, 9‐month, and 12‐month respiratory outcomes in patients following COVID‐19 ‐related hospitalisation: A prospective study. Lancet Respir Med 2021;9(7):747‐754. https://doi.org/10.1016/S2213‐2600(21)00174‐0

9. World Health Organization. Living guidance for clinical management of COVID‐19. 23 November 2021. https://www.who.int/publications/i/item/WHO‐2019‐nCoV‐ clinical‐2021‐2 (accessed June 2022).

10. Graham BL, Steenbruggen I, Miller MR, et al. Standardisation of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med 2019;200(8):e70‐e88. https://doi. org/10.1164/rccm.201908‐1590ST

11. Graham BL, Brusasco V, Burgos F, et al. 2017 ERS/ATS standards for single‐breath carbon monoxide uptake in the lung. Eur J Respir Med 2017;49(1):1600016. https:// doi.org/10.1183/13993003.00016‐2016

12. Quanjer PH, Stanojevic S, Cole TJ, et al.; European Respiratory Society Global Lung Function Initiative. Multi‐ethnic reference values for spirometry for the 3‐95‐yr age range: The global lung function 2012 equations. Eur Respir J 2012;40(6):1324‐1343. https://doi.org/10.1183/09031936.00080312

13. Masekela R, Koegelenberg CFN, Gray DM. Guidance to the applicability of the Global Lung Initiative spirometry reference equations for South African populations. S Afr Med J 2021;111(2):97. https://doi.org/10.7196/SAMJ.2021.v111i2.15439

14. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005;26(3):511‐522. https://doi.org/10.1183/09031936.05.00035005

15. Maree DM, Swanepoel RA, Swart F, et al. Position statement for adult and paediatric spirometry in South Africa: 2022 update. Afr J Thorac Crit Care Med 2022;28(4):181‐ 192. https://doi.org/10.7196/AJTCCM.2022.v28i4.287

16. American Thoracic Society. ATS Statement: Guidelines for the six‐minute walk test. Am J Respir Crit Care Med 2002;166(1):111‐117. https://doi.org/10.1164/ ajrccm.166.1.at1102

17. Hegewald MJ, DeCato TW. Does obesity affect diffusing capacity? Ann Am Thorac Soc 2023;20(7):951‐957. https://doi.org/10.1513/AnnalsATS.202304‐308ED

18. De Faria Santarem GC, de Cleva R, Santo MA, et al. Correlation between body composition and walking capacity in severe obesity. PLoS ONE 2015;10(6):e0130268. https://doi.org/10.1371/journal.pone.0130268

19. Vásquez E, Batsis JA, Germain CM, Shaw BA. Impact of obesity and physical activity on functional outcomes in the elderly: Data from NHANES 2005‐2010. J Aging Health 2014;26(6):1032‐1046. https://doi.org/10.1177/0898264314535635

20. Svard A, Lahti J, Roos E, et al. Obesity, change of body mass index and subsequent physical and mental health functioning: A 12‐year follow‐up study among ageing employees. BMC Public Health 2017;17(1):744. https://doi.org/10.1186/s12889‐ 017‐4768‐8

21. Torres‐Castro R, Vasconcelo‐Castillo L, Alsina‐Restoy X, et al. Respiratory function in patients post‐infection by COVID‐19 : A systemic review and meta‐analysis. Pulmonology 2021;27(4):328‐337. https://doi.org/10.1016/j.pulmoe.2020.10.013

22. Mo X, Jian W, Su Z, et al. Abnormal pulmonary function in COVID‐19 patients at time of hospital discharge. Eur Respir J 2020;55(6):2001217. https://doi. org/10.1183/13993003.01217‐2020

23. Ong KC, Ng AW, Lee LS, et al. 1‐year pulmonary function and health status in survivors of severe acute respiratory syndrome. Chest 2005;128(3):1393‐1400. https:// doi.org/10.1378/chest.128.3.1393

24. Parker A, Boloko L, Moolla MS, et al. Clinical features and outcomes of COVID‐19 admissions in a population with a high prevalence of HIV and tuberculosis: A multicentre cohort study. BMC Infect Dis 2022;22(1):559. https://doi.org/10.1186/ s12879‐022‐07519‐8

25. Sawadogo W, Tsegaye M, Gizaw A, Adera T. Overweight and obesity as risk factors for COVID‐19 ‐associated hospitalisations and death: Systematic review and meta‐analysis. BMJ Nutr Prev Health 2022;5(1):10‐18. https://doi.org/10.1136/ bmjnph‐2021‐000375

26. Mattioli AV, Coppi F, Nasi M, Pinti M, Gallina S. Long COVID: A new challenge for prevention of obesity in women. Am J Lifestyle Med 2023;17(1):164‐168. https://doi. org/10.1177/15598276221111054

27. PHOSP‐COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1‐year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir Med 2022;10(8):761‐775. https://doi.org/10.1016/S2213‐2600(22)00127‐8

28. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: A first step in understanding SARS pathogenesis. J Pathol 2004;203(2):631‐637. https://doi. org/10.1002/path.1570

29. Richter FC, Alrubayyi A, Teijeira Crespo A, Oxford‐Cardiff COVID‐19 Literature Consortium, Hulin‐Curtis S. Impact of obesity and SARS‐CoV‐2 infection: Implications for host defence – a living review. Oxf Open Immunol 2021;2(1):iqab001. https://doi.org/10.1093/oxfimm/iqab001

30. Basolo A, Poma AM, Bonuccelli D, et al. Adipose tissue in COVID‐19 : Detection of SARS‐CoV‐2 in adipocytes and activation of the interferon‐alpha response. J Endocrinol Invest 2022;45(5):1021‐1029. https://doi.org/10.1007/s40618‐022‐01742‐5

31. Martínez‐Colón GJ, Ratnasiri K, Chen H, et al. SARS‐CoV‐2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022;14(674):eabm9151. https://doi.org/10.1126/ scitranslmed.abm9151

32. Stein SR, Ramelli SC, Grazioli A, et al. SARS‐CoV‐2 infection and persistence in the human body and brain at autopsy. Nature 2022;612(7941):758‐763. https://doi. org/10.1038/s41586‐022‐05542‐y

33. Shang W, Kang L, Cao G, et al. Percentage of asymptomatic infections among SARS‐ CoV‐2 Omicron variant‐positive individuals: A systematic review and meta‐analysis. Vaccines (Basel) 2022;10(7):1049. https://doi.org/10.3390/vaccines10071049

34. El‐Ghitany EM, Hashish MH, Farghaly AG, Omran EA, Osman NA, Fekry MM. Asymptomatic versus symptomatic SARS‐CoV‐2 infection: A cross‐sectional seroprevalence study. Trop Med Health 2022;50(1):98. https://doi.org/10.1186/ s41182‐022‐00490‐9

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)