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Background. Globally, a growing body of research has shown that ambient air pollution is one of the most critical environmental issues,
especially in relation to human health. Exposure to ambient air pollution leads to serious health conditions such as lower respiratory infections,
cancers, diabetes mellitus type 2, ischaemic heart disease, stroke and chronic obstructive pulmonary disease.

Objectives. To estimate the burden of disease attributable to ambient air pollution in South Africa (SA) for the years 2000, 2006 and 2012.
Methods. Comparative risk assessment method was used to determine the burden of disease due to two pollutants (particulate matter (PM, )
and ambient ozone). Regionally optimised fully coupled climate chemistry models and surface air pollution observations were used to generate
concentrations of PM, . and ozone for each SA Census Small Area Level, for the year 2012. For 2000 and 2006, population-weighted PM, .
and ozone were estimated, based on the 2012 results. Following the identification of disease outcomes associated with particulate matter
with aerodynamic diameter <2.5 pm (PMZ_S) and ozone exposure, the attributable burden of disease was estimated for 2000, 2006 and 2012.
Furthermore, for the year 2012, the burden of disease attributable to ambient air pollution exposure was computed at provincial levels.
Results. In 2012, approximately 97.6% of people in SA were exposed to PM,, at levels above the 2005 World Health Organization guideline:
10 pg/m® annual mean. From 2000 to 2012, population-weighted annual average PM, . increased from 26.6 ug/m?’ to 29.7 ug/m’ and ozone
6-month high 8-hour daily maximum increased from 64.4 parts per billion (ppb) to 72.1 ppb. At a national scale, in the year 2000, 15 619 (95%
uncertainty interval (UT) 8 958 - 21 849) deaths were attributed to PM, , exposure, while 1 326 (95% UI 534 - 1 885) deaths were attributed
to ozone. In 2006, an estimated 19 672 deaths (95% UI 11 526 - 27 086) were attributed to PM, ., and a further 1 591 deaths (95% UI 651 -
2 236) to ozone exposure. In 2012, deaths attributed to PM, ; were 19 507 (95% UI 11 318 - 27 111), and to ozone 1 734 (95% UI 727 - 2 399).
Additionally, population-weighted provincial scale analysis showed that Gauteng Province had the highest number of attributable deaths due
to both PM, ; and ozone in 2012.

Conclusion. The study showed that ambient air pollution exposure is an important health risk in SA, requiring both short- and long-term
intervention. In the short term, the SA Ambient Air Quality Standards and industrial minimum emissions standards need to be enforced. In the
longer term, to reduce air pollution and the associated disease burden, the combustion of fossil fuels as a source of energy for power generation
and transportation, as well as industrial and domestic uses, needs to be replaced with clean renewable energy sources. In addition to local
measures, when the southern African prevalent anticyclonic air dynamics that transport regionally emitted pollutants into SA (especially from
biomass burning) are considered, it is also advisable to establish long-term regional co-operation in reducing air pollution.
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The article in context

The South African Comparative Risk Assessment Study 2000 (SACRA1) calculated the burden of disease due to outdoor air pollution in
selected urban areas in SA for the year 2000. It assessed the attributable burden for three diseases, namely cardiopulmonary disease, lung
cancer and acute respiratory infections (in children). The population-weighted particulate matter with aerodynamic diameter <2.5 um (PM, )
concentration was estimated to be 26.6 ug/m’ in selected urban areas, leading to 4 637 deaths or 0.9% (95% uncertainty interval (UI) 0.3 - 1.5)
of all deaths in the country in 2000.
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Added value of this study. The present study used updated methods to estimate the burden of disease due to ambient air pollution in SA for
2000, 2006 and 2012. PM,, and ozone were chosen as the main indicators of ambient air pollution, and their concentrations were computed
at SA Census Small Area Level using an aggregated approach that combined a regionally optimised fully coupled climate chemistry model
and air pollution observations. Besides computing exposure at a higher resolution, this study also used death data from the second SA
National Burden of Disease Study (SANBD2). For diseases attributable to PM,, exposure, relative risks were generated from integrated
exposure response relative risk curves for lower respiratory infections (LRIs), trachea, bronchus and lung cancers, diabetes mellitus type
2, ischaemic heart disease (IHD), stroke and chronic obstructive pulmonary disease (COPD). For both PM,, and ozone, population-
attributable fractions (PAFs) were computed at a high resolution. Following these, the burden of disease attributable to ambient air pollution
exposure was analysed and presented at both national and provincial scales.

Implications of the available evidence. There is a significant burden of disease due to ambient air pollution in SA. Efforts are needed to
reduce harmful concentrations of ambient air pollution in the country. In the short term, proactive enforcement of air quality regulations
and emissions standards is needed, while in the long term, the country needs to employ alternative strategies to eliminate reliance on fossil
fuels, to ensure industrial and domestic energy needs are met in an environmentally sustainable manner.

Air pollution is a threat to human health, well-being and sustainable
development.!"! Ambient air pollution is associated with significant
excess mortality and ill health.”’ In 2019, ambient air pollution was
responsible for an estimated 4.5 million deaths worldwide.** Recent
studies show that even short-term exposure to ambient air pollution
leads to slight but statistically significant increases in the relative risk
of all-cause mortality (from 0.41% - 0.72% increases for different
pollutants).””!

Ambient air pollution comprises a complex mixture of pollutants
that includes particulate matter (PM), ozone, carbon monoxide,
nitrogen oxides, sulphur dioxide, hydrocarbons, lead compounds
and others.!”! Generally, fine PM (PM,, - particulate matter with
aerodynamic diameter<2.5 pm) has a variety of both primary and
secondary, stationary and mobile sources. Primary PM,  particles
are emitted directly from sources, while secondary PM,  particles
are formed in the atmosphere through the chemical reactions
of precursor gaseous pollutants. Usually, fine- and coarse-mode
particles are generated by different processes, experience different
atmospheric physicochemical transformations and are removed from
the atmosphere through different mechanisms.” Various combustion
activities account for significant sources of anthropogenic gaseous
and particulate emissions that lead to the primary and secondary
formation of PM,,, whereas emissions from mechanical and non-
combustion activities such as mining, construction and agriculture
lead to a higher proportion of coarse-mode particles (particles within
the size range PM, - PM, , and PM, (particulate matter <10 um in
aerodynamic diameter).” Hence the main anthropogenic sources
of PM, emissions are mobile sources (exhaust emissions due to
the combustion of petrol and diesel in cars and trucks), stationary
sources (coal-burning power plants, industrial boilers burning coal
and oil, metallurgical plants), the combustion of coal and wood for
domestic energy, mechanical grinding during industrial processes
and windblown dust off coal and ash stockpiles, mine tailings
dumps and aeolian dust.®*!® Ground-level (ambient) ozone is a
secondary pollutant formed in the atmosphere through a complex
series of reactions involving volatile organic compounds (VOCs -
hydrocarbons, nitrogen oxides (NO_- nitric oxide (NO) and nitrogen
dioxide (NO,)) and ultraviolet sunlight.") Anthropogenic sources
contribute to the precursors of ozone formation (NO, VOCs)."
NO, is produced from combustion sources (power plants, industries,
vehicle emissions), and VOCs arise from emissions from vehicles,
petroleum industries, solvent utilisation, industrial processes, fuel
distribution and biogenic (plant) emissions."

Exposure to ambient air pollution leads to a significant burden
of disease.!"! Several studies have focused on the health effects on
children™!”) and adults living close to mines or industrial areas

in SA."™ Norman et al.'® estimated that 4 637 deaths and 42 000
years of life were lost to outdoor air pollution (specifically PM, ,) in
urban areas in SA in the year 2000. Compared with PM, , exposure
to PM,, gets more attention because the associated health outcomes
are more serious.?” Larger particles are filtered in the nose and
throat, but smaller PM, , particles may penetrate to the gas exchange
regions of the lung. The smallest particles pass the epithelial and
subepithelial barriers to affect other organs of the body.”"! PM,
exposure is associated with the development of many conditions,
including LRIs,?! trachea, bronchus and lung cancers,”® diabetes
mellitus type 2, COPD,??! THD,?" stroke®®” and adverse birth
outcomes?®*! such as low birthweight, preterm birth and stillbirth.
When ambient ozone is inhaled, it is absorbed in the upper
respiratory tract and moves into the intrathoracic airways, reaches
the lower respiratory tract and dissolves into the epithelial lining
fluid.*® Both short-term and long-term exposure to ozone have
been linked to ill-health effects (such as lung function decrements,
susceptibility to respiratory tract infections, asthma attacks and
COPD)B and premature mortality.!

Both regionally and globally, the concentrations of fine PM
and ambient ozone are indicators of ambient air pollution, and
are monitored for regulatory purposes.”!! In SA, the National
Environmental Management Act No. 39 of 20045 governs the
standard-setting processes for a range of pollutants. Ambient
air quality standards for most pollutants were gazetted in 2009,
while the standard for PM,  was gazetted in 2012.°** The
PM,, annual average standard was 25 pg/m’® in 2012, decreasing
to a more protective 20 pg/m’in 2016. For ambient ozone,
the national ambient air quality standard is 61 ppb or 120 ug/
m® for an 8-hour running mean concentration.® In 2005, the
World Health Organization (WHO) ambient air quality guideline
(AQG) recommended an annual mean of 10 pg/m* for PM,
and a 100 pg/m* (51 ppb) 8-hour mean for ozone.*® In 2021,
updated AQGs were released by the WHO where the PM,, AQG
was reduced from 10 to 5 pg/m® for the annual mean, and for
ozone, it was set to a short-term value of 100 ug/m® 8-hour daily
maximum, and a new long-term guideline of 60 pg/m? 8-hour mean
for the seasonal peak value.®” While the establishment of these
ambient air pollution standards was undoubtedly an important
step for SA, their enforcement remains tentative.*! Although every
municipality in SA should be monitoring and reporting air quality
data to the SA Air Quality Information System (SAAQIS), many are
not doing so,* contributing to weak air quality data availability.”

Where monitoring data are available, air pollution standards are
being exceeded at many sites in SA.*****! This may be in part due
to the country’s heavy reliance on its mining, petrochemical and
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PM2.5 and ozone

Employing regionally optimized fully coupled climate-
chemistry model (RegCM-CHEM4.6), PM2.5 and ozone were
computed at a high resolution. (The description of integrated
modelling system, its simulation designs and setups,
modelling schemes employed, datasets used, and others are
provided in Section 1.2 in the supplementary appendix.)
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stations.
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Burden of disease

Fig. 1. Data sources for calculating the burden of disease attributable to ambient air pollution (PM, , and ozone) for 2012. (HAP = household air pollution;
SAAQIS = South African Air Quality Information System; YLL = year of life lost, YLD = year of life lived with a disability, DALY = disability-adjusted

life year.)

metallurgical industries, along with poorly regulated coal-fired
power stations,”? with coal being used to generate 82% of the
country’s electricity."!) These activities affect the region,*? especially
in hotspot locations (priority areas) such as the Vaal Triangle
Airshed Priority Area, the Highveld Priority Area and the Waterberg-
Bojanala Priority Area. These regions are considered priority areas
because of emissions from industrial activities such as mining,
electricity production, industrial activities and domestic solid-fuel
burning resulting in widespread exceedances of ambient air quality
standards.**1 At an individual level, it is difficult to control the
quality of the ambient air we breathe, but government regulation and
enforcement of air quality and source emission standards can play a
pivotal role in reducing the burden of disease caused by exposure to
ambient air pollution. To generate evidence to inform the reduction
and management of ambient air pollution and its health impacts, this
study aimed to estimate the burden of disease attributable to ambient
air pollution (PM, , and ozone) for the years 2000, 2006 and 2012.

Methods

This study used comparative risk assessment methodology” to
estimate the burden of disease attributable to ambient air pollution
using the counterfactual scenario of the theoretical minimum risk
exposure level (TMREL). Calculating the burden of disease entailed
computing the concentrations of PM, , and ozone, identifying health
outcomes and calculating the PAFs (Fig. 1).

Following the Global Burden of Diseases, Injuries, and Risk
Factors Study 2017 (GBD 2017)“¥! approach, the health risks from
ozone and PM,  were calculated separately. The study also made
the assumption that the entire population was exposed to ozone.

For PM, , it was assumed that in each SA Census Small Area Level
(SAL), the proportion of the population not using solid fuels is
exposed to PM,, at the modelled ambient concentration, and that
the proportion using solid fuels is exposed at a higher exposure level
applicable to households using solid fuels for cooking (household air
pollution (HAP)). The PM, , disease burden due to HAP is reported
separately,*! thereby ensuring that the PM,, risks for the entire
population are accounted for.

Exposure definitions

Consistent with the GBD 2017!“®! definitions, exposure to PM, , was
defined as the annual average exposure to outdoor air concentrations
of PM, .. Similarly, following GBD 2017, exposure to ozone was
defined as the mean of the 6-month period with highest mean 8-hour
daily maximum ozone concentrations (July - December 2012),
henceforth abbreviated to 6-mo-high-8h-daily-max.*!

Estimating exposure to PM, _ and ozone in SA for 2012
Online integrated climate chemistry model

Computational advances have allowed for the two-way interactive
coupling of atmospheric chemistry with various static and dynamic
components of the climate system.**"! These advanced numerical
modelling systems are known as fully coupled or ‘online integrated’
climate chemistry models.'***!! Despite their computational demands,
fully coupled climate chemistry models become crucial tools for
addressing the issues of atmospheric composition, as well as climate
chemistry interactions."*!! Rather than coarse-resolution global-
scale models, online integrated regional models are known to
deploy sub-grid scale model physics, locally resolved dynamical
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information, atmospheric physicochemical
processes and so on.**!l Hence fine-scale
regional models allow the generation of more
realistic small-scale climate information,
chemical processes and patterns at a higher
resolution than the global-scale models."*

Accordingly, to model the concentration
and spatiotemporal distributions of PM,
and ozone for the whole of SA (section
1.1 in appendix: https://www.samedical.org/
file/1932) at a higher resolution for the
year 2012, the present study deployed the
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Fig. 2. Population-weighted (A) annual mean concentration of PM, , (ug/m’), (B) mean of the 6-month
period with highest mean 8-hour daily maximum ozone concentrations ambient ozone concentrations

(ppb), at district scale in South Africa for 2012.

International Center for Theoretical Physics
fully coupled regional climate chemistry
model (RegCM-CHEM4.6).% Previous studies
have shown the regional optimisation
and capabilities of RegCM-CHEM in
reproducing the state of the atmosphere
(both meteorology and chemistry) over
southern Africa.’™** A detailed description
of the RegCM-CHEM modelling system,
simulation set-ups, modelling schemes
employed and datasets used are provided
in section 1.2 of the appendix. The model
outputs were calibrated using SAAQIS
ground monitoring data.

Ground monitoring station data

Ground-based air quality observations were
used to compare and correct modelled
surface concentration of PM, , and ozone.
Hourly observations of PM,, and ozone
were obtained from SAAQIS. During the
analysis, there were 62 PM- and 38 ozone-
monitoring stations that reported to
SAAQIS (section 1.3 in appendix). However,
after applying multi-data quality screening
criteria, this study used 46 PM and 31 ozone
sites (additional details available in appendix
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(C) death and (D) DALY rates per 100 000 population. (All graphs exhibit the national outcomes for South Africa for 2000, 2006 and 2012.)
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Fig. 4. Deaths attributable to PM,, by disease condition for (A) 2000 and (B) 2012. Disability-adjusted life years (DALYs) attributable to PM,, by disease
condition for (C) 2000 and (D) 2012. (Cardiovascular disease is the addition of ischaemic heart disease and stroke. Lower respiratory tract infections were a

disease outcome for all ages.)

Fig. S5, and Tables S3 and S4: https://www.samedical.org/file/1810).
The multi-data quality screening criteria applied in this study are:
(#) exclusion of data points that exhibited values outside the minimum
(ie. <3 pg/m’® for PM,, and <1 ppb for ozone) and maximum
(ie. >500 pg/m’® for PM,, and >350 ppb for ozone) concentration
thresholds; (ii) for PM, ,, over monitoring stations that report both
PM,, and PM,, if the PM, levels reported exceed concurrent
co-located PM, levels as well as if the station registers the same
concentrations for 3 or more consecutive hours, those PM, , data points
are omitted; (iii) after applying the aforementioned criteria, stations
with a valid data recovery efficiency with a benchmark of 75% were
used. In 2012, among the total stations that reported PM parameters
to SAAQIS, 21 monitoring stations reported both PM,, and PM g
(14 sites with valid data points), and the remaining 41 stations (32 sites
with valid data points) reported only PM,  (appendix Fig. $6). For sites
only reporting PM, , their PM, , values were estimated following the
approach detailed in section 1.3 in the appendix.

Most of the observational stations that reported to SAAQIS are
concentrated in the northern and eastern parts of the country, where
anthropogenic sectors (e.g. urban, residential, biomass burning and
industrial activities), as well as population density, are higher (appendix
Fig. S3: https://www.samedical.org/file/1810). This provided the
opportunity to produce optimal bias-corrected values of PM,, and
ozone, throughout industrially active and densely populated areas of SA.

Model calibration

The initial comparison of modelled hourly values with quality-
controlled observations from SAAQIS showed that the model
adequately captured both the magnitude and spatiotemporal
distributions of PM, and ozone. However, to enhance the quality of

modelled values and ensure their reliable applicability for regional
exposure studies, quantile mapping-based bias correction was
performed.®®”) Region of influence-specified quantile functions
were constructed in order to transform modelled outputs into
quality-controlled hourly observations of PM,, (over 46 sites:
appendix Fig. S5A: https://www.samedical.org/file/1810) and ozone
(over 31 sites: appendix Fig. S5B), for the entire year of 2012. The
quantile transformation functions were applied within their region
of influence in terrestrial parts of SA to generate bias-corrected
PM, and ozone distributions. Afterwards, at the local scale, bias-
corrected PM, , and ozone were compared with observations of
individual sites. The comparison showed the bias-corrected 8-hour
running average ozone annual mean bias (AMB) is within the range
of ~-2.2 - 2.9 ppb, while over 91% of the stations’ ozone AMBs
are within the range of ~-0.04 - 0.59 ppb. Also, for the PM_ ,, the
AMBs are within the range of ~-2.8 - 3.4 ug/m’, with over 87% of
the stations’ PM,, AMBs within the range of ~-0.91 - 0.5 pg/m’.
Further information on monitoring sites and statistics are tabulated
in appendix Tables S3 and S4 (https://www.samedical.org/file/1810).

Polygonal transformation

For exposure analysis, the bias-corrected gridded distribution of
PM,, and ozone were transferred into a polygonal distribution
based on the population census 2011 SAL polygons from Statistics
SA.® The transformation of gridded to polygonal distribution
was performed using a polygonal size-dependent multi-grid point
weighted average matrix. To verify the transformation accuracy,
the gridded values were interpolated into the centroid of each of
the polygons and compared with the corresponding polygonal
values of ozone and PM, .. The transformation analysis showed
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Fig. 5. PM, , attributable (A) deaths and (B) disability-adjusted life years (DALYs) by province for 2012.

99.6% and 99.2% of polygonal values have less than 1 ppb of
ozone and 1 pg/m* of PM, , absolute difference, respectively, when
compared with the gridded values that are interpolated into the
centroid of each of the polygons.

Adjustment for HAP

Although HAP and ambient air pollution are related, since both
are indexed against annual PM, , exposure, we analysed the disease
burden due to these risk factors separately. To estimate total PM,
risks and burden of disease, we assumed in each SAL that modelled
ambient concentrations applied to the total population minus the
population exposed to HAP. The estimates of HAP due to cooking
with solid fuels were made using the Census 2011 data.l™®

Population weighting air pollution estimates

After mapping the calibrated PM, ; and ozone concentrations onto
90 271 SAL polygons of the SA Census 2011, the shape files were
exported into Excel (Microsoft Corp., USA). The exported files
contained PM,, and ozone concentrations for each SAL and their
corresponding small-area geographical information. The national
and provincial population-weighted average values were computed
based on the SAL values within their respective boundaries.

The population-weighted PM,, and ozone concentrations were
calculated using ArcGIS software (ArcGIS, USA). The PM,, and
ozone SAL layers were overlaid onto their corresponding population
layers, then following equation 1, the population-weighted annual

mean concentrations of PM,, and population-weighted 6-mo-high-
8h-daily-max ambient ozone concentrations were calculated:!**-®!

X (PxC)
XP

where P, is the population in SAL i, and C, is its corresponding
pollutant concentration.

Estimating exposure to PM2.5 and ozone in South Africa
for 2000 and 2006

For 2000, the estimate of population-weighted mean PM,, used by
Norman et al™ was adopted (26.6 pg/m’). A linear interpolation was
done between the 2000 and 2012 values to calculate an estimate of PM, ,
for 2006. For ozone, the 2012 modelled estimate was used, together with
a20% (95% confidence interval: 15 - 25) increase per decade based on a
study by Thompson ef al.,’*”) to calculate values for 2000 and 2006.

Disease outcomes and relative risks

Generally, particulates differ in physical properties, size distribution
and chemical composition, depending on their emission sources
and formation processes, and lead to different impacts on human
health. However, the present study, consistent with other studies,*
assumes that the relative risks associated with PM,  depend
only on the mass concentration of PM,, irrespective of the
relative contributions of different sources or of differing chemical
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Fig. 6. Ozone-attributable (A) deaths and (B) disability-adjusted life years by province for 2012.

compositions. Thus both primary and secondary PM,, arising
from anthropogenic activities (such as coal power plants, road
traffic, industries, open biomass burning, the use of solid fuels
in households), and natural events (such as windblown dust,
biogenics), are assumed to have the same exposure-response
relationship, based only on the mass concentration.?!!

GBD 20174 was referenced for appropriate disease outcomes and
relative risks associated with PM, ; and ozone (Table 1). For PM_,
integrated exposure response (IER) relative risk curves were derived
using available evidence to estimate the relative risks of exposure
over the entire global range of exposures (appendix section 1.4:
https://www.samedical.org/file/1810).1°*%l IER relative risk curves
were used to generate relative risks at each SAL corresponding to
computed PM, ; concentrations using R statistical software version
3.6.0 (R core Team, Austria). For ambient ozone exposure, COPD
in adults 225 years was a risk-outcome pair.®”)

Computation of population attributable fractions

For computing population attributable fractions, Excel spreadsheets were
developed for each year of interest. For PM, ,, the relative risks (mean,
lower bound and upper bound) for each disease outcome and age group
were calculated for each concentration of PM, , in each SAL, using the
IER relative risk tables and calculation procedure. We calculated the
population exposed to ambient air by taking the total population in each
SAL and subtracting the people using solid fuels for cooking.

The attributable fractions for each SAL were calculated using:

P[RR(x) — RR(TMREL)]
PAE = R — 11+ 1

where P is the proportion of the population in each SAL exposed at
the ambient air concentration value x and RR(x) and RR (TMREL) are

the relative risks calculated at exposure level x and the counterfactual
TMREL values, respectively. For the national and provincial geographies,
the PAFs for each age group and risk factor were calculated as the age-
group population (in each SAL)-weighted average.

Computation of attributable burden

The attributable fractions were multiplied by the estimates of deaths,
years of life lost (YLLs), years of life lived with a disability (YLDs)
and disability-adjusted life years (DALYs) from the second SA
National Burden of Disease Study (SANBD?2)¢"! for the appropriate
year. The national attributable burdens are the sum of the provincial
attributable burdens for 2012. Age-standardised death and DALY
rates were calculated by multiplying the attributable disease burden
by the alternative mid-year population estimates'®® for each respective
year, and dividing it by the WHO population standard.!®!

Uncertainty estimation

For PM, and ozone, we did not consider uncertainty around the
exposure estimates. Uncertainty around the TMREL was included
in the calculation of the relative risks. For PM,, and ozone, we used
the lower and upper 95% uncertainty levels of the relative risks to
derive the lower and upper 95% uncertainty levels of the attributable
fractions, and multiplied these by the burden estimates to produce
lower- and upper-bound estimates of attributable burden.

Results

The 2005 WHO AQG for annual mean PM,. was 10 pg/m?,
and the SA National Air Quality Standard for annual PM,, is
20 pg/m> Results showed that in 2012, 97.6% of the total
population of SA lived in areas that were exposed to population-
weighted annual PM,, concentrations above the 2005 WHO
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Table 1. Description of ambient air pollution definitions, disease outcomes and relative risks

Indicator pollutant
Information PM, . Ambient ozone
Indicator Annual average concentration of PM, _ in SA in pg/m’ Mean of the 6-month period (July - December) with highest
definition mean 8-hour daily maximum ozone concentrations (ppb)
Theoretical Assigned a uniform distribution with lower/upper bounds ~ Assigned a uniform distribution with lower/upper bounds
minimum (2.4 - 5.9 pg/m?)1l (29.1 and 35.7 ppb).*
Disease LRIs (J09-J18, J20-J22) Chronic obstructive pulmonary disease (J40-J44, J47)

outcomes and
ICD-10 codes

Trachea, bronchus, and lung cancers (C33-C34)
Diabetes mellitus type 2 (E11)

IHD (120-125)

Stroke (160-169)

COPD (J40-J44, J47)

People of all ages:

o LRIs

People aged >25 years:

o Tracheal, bronchus and lung cancer

Disease
outcomes by

age group

« Diabetes mellitus type 2
« IHD

o Stroke

« COPD

People >25 years:

« Chronic obstructive pulmonary disease

« For every 10 ppb increase in ozone exposure, the risk of
death from COPD increased linearly by 2.9% (RR: 1.06,
95% CI: 1.02 - 1.10).[%%)

SA = South Africa; LRI = lower respiratory infection; IHD = ischaemic heart disease; COPD = chronic obstructive pulmonary disease; RR = relative risk; CI = confidence interval.

guideline (Figs 2A and B). Only 5.8% of districts, all located in
the Western Cape Province, met this guideline. A total of 69.9%
of the total population lived in areas exposed to PM,, levels above
the national standard of 20 pg/m’. Gauteng Province experienced
the highest levels of PM, pollution, with an average population-
weighted annual concentration of 52.3 ug/m’® and a peak of
65.0 pg/m®. Therefore Gauteng, with 24% of the total population,
was exposed to high levels of pollution. In addition, the population-
weighted mean PM,, values (ug/m’) in KwaZulu-Natal (30.7),
Mpumalanga (24.7), North West (23.5) and Free State (22.5) provinces
all exceeded the national standard of 20 pg/m’.

The SA National Air Quality Standard for the daily maximum
8-hour running mean of ozone is 61 ppb. However, the 2005 WHO
AQG is 100 pg/m?, which is equivalent to 50 ppb.*®! The analysis of the
population-weighted 6-mo-high-8-h-daily-max ozone concentrations in
SA found that in 2012, 93.8% of the total population lived in areas that
exceed the national standard during the 6-month high-ozone season,
while 100% of the areas exceeded the 2005 WHO ozone AQG. The
highest mean 6-month high-ozone season values occurred in Free State
and North West provinces (80.4 ppb and 80.1 ppb, respectively). The
highest 8-hour running mean ozone values, >110 ppb, occurred in Free
State, North West, Gauteng, KwaZulu-Natal and Eastern Cape provinces.

The 2012 national population-weighted annual average PM,,
concentration was estimated to be 29.7 ug/m?’. For 2006, we estimated the
population-weighted annual average PM, , concentration was 28.2 pg/
m’, and for 2000 we used a national population-weighted annual average
of 26.6 pg/m>." For ozone, the population-weighted 6-mo-high-8h-
daily-max ambient ozone for 2012 was 72.1 ppb. It was estimated to be
64.4 ppb for 2006 and 58.1 ppb for 2000.

Burden of disease attributable to ambient air pollution
exposure

At a national scale, the number of deaths attributable to PM, . increased
from 15 619 in the year 2000 to 19 507 in 2012, representing a 19.9%
increase (Table 2). The number of deaths attributable to ozone increased
by 23.5% from 2000 to 2012 (from 1 326 in the year 2000 to 1 734 in
2012) (Table 3).

While comparing the 2000 and 2012 national scale outcomes, the
PM, , age-standardised death rate increased by 2.7% and the DALY
rate increased by 5.4% (Figs 3A and B). Similarly, the national scale
analysis for ozone shows that the ozone age-standardised death rate
increased by 6.0% and the DALY rate increased by 25.8% (Figs 3C
and 3D). In the case of both pollutants, the age-standardised death
and DALY rates were higher in males than females.

The results in Fig. 4 show that cardiovascular disease contributed
to a large proportion of the mortality and morbidity burden
attributable to PM,, in 2000 and 2012. In terms of ozone exposure
disease outcome, the study only considers the contribution of ozone
to COPD, hence it is not displayed in a pie chart. The national scale
analysis for age- and gender-categorised distribution of deaths
attributable to PM, ; and ozone (for the years 2000, 2006 and 2012) are
provided in section 2.2 of the appendix (https://www.samedical.org/
file/1810). In terms of age-categorised impact, the deaths attributable
to PM, , exposure are higher within the age band of >70 years (for
females) and 60 - 69 years (for males) (appendix Fig. S10). In terms
of the deaths attributable to ozone exposure, the age-categorised
analysis shows that the female and male populations within the age
band of >80 years experience the highest impact (appendix Fig. S11).

Burden of disease due to ambient air pollution by
province for 2012
The provincial variations on population-weighted annual PM,
levels are provided in appendix Table S5 (https://www.samedical.
org/file/1810). Gauteng (52.3 pg/m’), KwaZulu-Natal (30.7 pg/m?)
and Mpumalanga (24.7 ug/m?) had the highest population-weighted
concentrations of PM, .. The highest number of deaths and DALYS
due to PM,, exposure occurred in Gauteng, KwaZulu-Natal and
Eastern Cape (Fig. 5). The provincial analysis determined that lower
respiratory infections (in Gauteng) and diabetes mellitus type 2
(in KwaZulu-Natal) are the leading causes of deaths and DALYs
attributable to PM, , (appendix Fig. S12).

When the population structure and underlying cause of death are
taken into account, the age-standardised death rates due to PM, .
were highest in Gauteng, KwaZulu-Natal and Free State provinces
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Table 3. Burden of disease due to ambient ozone by health outcome and sex for 2000, 2006 and 2012

Total

Males

Females

DALYs, n

Deaths, n

DALYs, n AF

Deaths, n

DALYs, n AF

Deaths, n

AF

Disease outcome

2000

36 086

1326

11

19 589

850

11

16 497

476

11

COPD

(14 533 - 51 302)

0.2

(534 - 1 885)

0.3

(7 889 - 27 849)

0.2

(342 - 1 209)

0.3

(6 644 - 23 453)

0.2

(192 - 676)

0.2

95% UL

% of total burden
95% UI (%)

2006

(0.1-0.3)

(0.1-0.4)

(0.1-0.3)

(0.1-0.5)

(0.1-0.3)

(0.1-0.3)

47 135

1591

14

25780

1027

14

21 355

564

14

COPD

(651 - 2236) (19 297 - 66 249)
0.2

0.2

(10 554 - 36 234)

0.2

(420 - 1 443)

0.3

(8743 -30015)

0.2

(231 - 793)

0.2

95% Ul

% of total burden
95% UI (%)

2012

0.1-0.3)

(0.1-0.3)

(0.1-0.3)

(0.1 -0.4)

(0.1-0.2)

(0.1-0.2)

(25 634 - 84 605)

61 130

(727 - 2 399)

17 1734

(12 311 - 40 612)

29 350

(457 - 1 508)

1090

17

(13 323 - 43 993)

31781

(270 - 890)

643

17

95% UI

COPD
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uncertainty interval.

disability-adjusted life year; COPD = chronic obstructive pulmonary disease; UL

AF = attributable fraction based on the numbers of attributable deaths; DALY

(appendix Fig. S13: https://www.samedical.org/file/1932). The age-
standardised DALY rate was highest in the Free State, which may
be due to the large YLL contribution of LRIs to the cause of death
profile in that province./”

The provincial variations on population-weighted 6-mo-high-8h-
daily-max ambient ozone are provided in section 2.3 of the appendix.
As shown in appendix Table S6 (https://www.samedical.org/
file/1932), the highest values of population-weighted 6-mo-high-
8h-daily-max ozone are found in the Free State (80.4 ppb), North
West (80.1 ppb) and Gauteng (74.7 ppb). However, the highest
number of deaths attributable to ambient ozone exposure occurred
in Gauteng and the Western Cape (Fig. 6).

However, when the population structure and underlying cause of
death are taken into account, the age-standardised death and DALY
rates due to ozone were highest in the Northern Cape and Western
Cape (appendix Fig. S14). With COPD being the only cause of death
attributable to ozone, the high age-standardised rates in these two
provinces are likely due to the high YLL burden of COPD to the cause
of death profile in these provinces.

Discussion

This article has shown that in 2012, almost 51 million South Africans
(97%) were exposed to harmful concentrations of PM,, above
10 pg/m’, and 35 million (67%) were exposed to concentrations
above the national standard of 20 ug/m°®. For ozone, we estimated
that >49 million South Africans (93.8%) were exposed above the
61 ppb SA 8-hour standard during the 6-month high-ozone season.
For 2000 and 2012, the PM,, concentrations increased by 12%,
from 26.6 pg/m?’ to 29.7 ug/m’. During the same period, ozone levels
increased significantly. This indicates a widespread problem with
ambient air pollution in SA.

PM, , is a serious challenge in Gauteng, the most densely populated
province in SA, with various urban and industrial activities in and
around the province responsible for both primary and secondary
particulates. In addition to these local sources, the predominance of
anticyclonic circulation and strong subsidence over southern Africa
promotes adiabatic warming and produces a stable atmospheric
thermodynamic structure (as discussed by Tyson and Gatebe”").
These conditions strongly favour the formation of tropospheric
stable layers over southern Africa (usually within an altitude range
of 700 - 600 hPa)." The semiarid nature of Gauteng, the higher
level of gaseous pollutant emissions that are precursors of secondary
aerosols, along with the atmospheric stable layers of the region - all
these circumstances together facilitate the formation of secondary
PM, .. Furthermore, the regional stable layers play an important
role in inhibiting the vertical diffusion of particulates: as a result,
both primary and secondary PM, , over most areas of Gauteng are
accumulated in the lower parts of the troposphere.

In addition to the local emission factors and the background
atmospheric conditions, the mesoscale dynamics of the region play
an important role in influencing the spatial distribution of ozone.
As a result of the southern African subtropical region predominant
anticyclone surface air circulation, most of the anthropogenic plume
that originates from highveld zones of Gauteng and Mpumalanga
disperses towards the central and eastern parts of SA before exiting
the country over the Indian Ocean.”>”?! This plume usually contains
hydrocarbons and NO_ that are precursors of ozone. Hence beside the
local precursor sources, the abovementioned dynamical conditions
of the region, along with the enhanced air temperature and moist
meteorological conditions of the coastal regions, aggregately become
important contributing factors for enhanced presence of ozone in the
eastern parts of the country.
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Several other studies!””*7! have estimated the burden of disease
due to ambient air pollution in SA. SACRALI estimated the burden
of disease attributable to urban outdoor air pollution in SA for the
year 2000."*) The study focused on urban areas, and included six
metropolitan areas and the Vaal Triangle area, seven areas with
a population of 15 million, 33% of the total 2000 SA population.
SACRAL1 estimated that outdoor air pollution caused 4 637 deaths.
We report a much higher number of deaths (15 619 deaths) due to
ambient PM, , in 2000. The SACRA1 estimate was very conservative,
because only 33% of the population in metro areas was assumed
to be at risk. In the present study, we estimated that 71% of the SA
population were exposed to ambient PM,, in the year 2000 (i.e.
31 million people were exposed to PM, ). Also, our study included
updated relative risks and additional disease outcomes, as evidence
has emerged to support the causality of ambient air pollution in
various diseases, such as LRIs in people of all ages, diabetes mellitus
type 2, stroke and IHD. These factors largely explain why our current
estimates are higher.

The State of Global Air™ (using GBD 2019 estimates) estimated
exposure to PM,  using various sources. Their study ascribed
25 500 deaths to ambient PM,  in SA in 2012, which is higher than
the number we estimated (19 507 deaths). The difference between
the two studies could be ascribed to the methods used. We used
a regionally optimised, fully coupled regional climate chemistry
modelling system, with modelled outputs calibrated against SAAQIS
air quality monitoring data, whereas the State of Global Air uses
satellite observations, a global chemical transport modelling system
and a more limited dataset of ground observations than ours (for
SA)." We used IER relative risk curves (from GBD 2017"),
whereas the State of Global Air used relative risk curves from GBD
2019.B) In terms of ambient ozone in SA, we estimated a much
higher population-weighted ozone than the State of Global Air
(72.1 ppb v. 38.8 ppb), which explains why we estimated more deaths
due to ozone (1 734 v. 512 deaths)."

Another study applied the BenMAP model to conduct a health
impact analysis due to PM, , in SA. Altieri and Keen"”” used similar
inputs to our study but different TMREL values, relative risks and
mortality data. They estimated that 14 000 deaths could be avoided
if SA met the existing standard for PM, , exposure of 20 ug/m’ and
that another 14 000 deaths could be avoided if the WHO standard of
10 pg/m’ was met. We estimated fewer deaths compared with their
study (19 507 v. 28 000), which could be due to the different inputs
and the way in which HAP was accounted for.

Strengths and limitations

Various studies have used different techniques to determine the
burden of disease attributable to air pollution, all indicating that
ambient air pollution is a challenge in SA. To our knowledge, the
present study represents the first time that a regionally optimised
fully coupled regional climate chemistry model, along with
observational calibration, has been applied in conjunction with a
burden of disease assessment for PM, , and ozone for SA. Generally,
in terms of estimating PM,_ and ozone concentrations, owing
to the computational demands and complexity of atmospheric
physicochemical processes, global scale models are implemented at
coarse spatial resolutions.” On the other hand, fine-scale regional
climate models are known to deploy sub-grid scale model physics,
locally resolved dynamical information, spatio-temporally variable
chemical/photochemical processes and other data. Hence, the
regional numerical models are crucial in obtaining more realistic
regional (small-scale) chemical and meteorological information at
a higher resolution than global scale models.”*””) Also, the use of

locally driven population and health information are important for
more realistic estimates of the disease burden attributable to ambient
air pollution. Considering the aforementioned, relative to the GBD,
which deploys the global scale model with a coarse resolution,
and uses indirectly driven or globally approximated model forcing
datasets and coarse-resolution population and health information
estimates, the present study has the following advances: (i) it applies
a regionally optimised fully coupled climate chemistry model along
with locally informed model forcing datasets - this enabled us to
capture more realistically the physicochemical processes of the
region; (ii) even though the model adequately captured both the
magnitude and spatiotemporal distributions of PM,, and ozone,
to further enhance the quality of modelled values and ensure their
reliable applicability for regional exposure studies, bias corrections
were performed using regionally obtained and quality-controlled
surface observations; (iii) unlike the GBD, in terms of population
statistics and health information, this study uses locally driven,
higher resolution and quality-controlled information from Statistics
SA and the national health department for each province of SA.

Compared with the highveld industrial zones of SA, the availability
of ground measurement data for coupled model calibration in
eastern coastal areas and the south-eastern industrialised regions is
limited. Also, the number of ozone observations is generally smaller
when compared with the PM monitoring stations. In contrast,
the spatial coverage of ground measurements in the northern
and eastern parts of the country (particularly over the highveld
industrial zones) was much better. This provided the opportunity
to generate optimally calibrated PM,, and ozone values in highly
industrialised and densely populated areas of SA. Overall, applying
various screening and optimisation techniques, the study applies
the best available information at the time. It is also recommended
that future assessments could be strengthened through additional
monitoring stations and more reliable monitoring data.

We used a previous iteration (GBD 2017*) of the IER relative
risk curves and associated outcomes. The inclusion of the updated
outcomes would likely have increased the attributable burden in our
study. In GBD 2019,7 the relative risk curves were updated with
relevant studies at high PM,, concentrations, studies on PM,  due
to smoking were excluded and meta-regression-Bayesian, regulated,
trimmed spline fitting was used to generate risk curves. GBD 2019 also
included low birthweight and short gestation as exposure outcomes
due to PM,,, resulting in a 44% increase in DALYs compared with
GBD 2017.5 In addition, the IER relative risk curves are constructed
using PM, . from various different sources, and assume equitoxicity
of particles, despite current evidence indicating that the source, size
and chemical composition of particles impact health differentially.!*!
The study is also limited by the assumption that the health effects of
PM,, and ozone are independent. Although this assumption is also
made by other burden of disease studies,*®! the health risks due to
PM, ; and ozone could be additive or multiplicative.

Conclusion
The burden of disease due to ambient air pollution, particularly due
to PM, ,, is large, especially when compared with other environmental
risk factors such as HAP due to cooking with solid fuels. Research on
the health risks associated with ambient air pollution continues to
mount, showing that even low levels of exposure can have adverse
health outcomes. Reducing the level of ambient air pollution to
counterfactual levels in SA would reduce the burden of both non-
communicable and infectious diseases.

It is vital that we sustain and amplify efforts to monitor and reduce
ambient pollutant concentrations in the country. A comprehensive
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system of monitoring stations measuring ambient air quality
will provide important information in this effort. The urgent
strengthening and enforcement of air-quality-related legislation
is needed to reduce both the concentrations of pollutants and
consequent burden of disease. In the longer term, the sources of
pollution should be addressed: the combustion of fossil fuels for
energy and transportation, the major source, should be phased out
completely, and should be replaced with sustainable and clean energy
sources, which do not produce emissions that are harmful to human
health and the environment. Regionally, efforts should also be made
to establish multi-country southern African co-operation to reduce
air pollution.
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