Clinical Practice

The role of mental health in obesity management

K Mawson, MB ChB, FC Psych (SA), MMed (Psych) ; E J Barnard, MB ChB, MMed (Psych) ; J Lubbe, MB ChB, MMed (Surg), FCS (SA), PhD ; M Conradie-Smit, MB ChB, MMed (Int Med), FCP (SA), Cert Endocrinology & Metabolism (SA), MPhil (HPE) ; W May,5* MB ChB, FCP (SA), Cert Endocrinology & Metabolism (SA)

- ¹ Department of Psychiatry, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
- ² M-Care Optima Psychiatric Hospital and Bloemcare Psychiatric Hospital, Bloemfontein, South Africa
- ³ Division of Surgery, Department of Surgical Sciences, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
- ⁴ Division of Endocrinology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
- ⁵ Cape Town Bariatric Clinic, Life Kingsbury Hospital, Cape Town, South Africa
- * Joint last authors

Correspondence: guidelines@sammss.org

Cite this chapter: Mawson K, Barnard E J, Lubbe J, Conradie-Smit M, May W. The role of mental health in obesity management. S Afr Med J 2025;115(9b):e3697. https://doi.org/10.7196/SAMJ.2025.v115i9b.3697

KEY MESSAGES FOR HEALTHCARE PROVIDERS

- Be aware of the links between mental health and obesity, and ensure that you manage weight-promoting medications used in the treatment of psychiatric conditions.
- · Be aware that mental health can impact on obesity management efforts, and screen people living with obesity (PLWO) for potential mental illnesses that need to be addressed (with a focus on depression, binge-eating disorder [BED] and attention deficit hyperactivity
- · Off-label (absence of approval by regulatory bodies) use of antipsychotics should be avoided, as significant metabolic adverse effects can occur even when these medications are prescribed at lower doses.
- · When initiating antipsychotic treatment for the first time, avoid medications with higher metabolic risk, as individuals in their first episode respond well regardless of which medication is prescribed (and are at greatest risk for weight gain).
- · Consider switching strategies to a lower metabolic liability antipsychotic in individuals with severe mental illness who gain weight on an antipsychotic treatment.
- · For patients with severe mental illness who gain weight on antipsychotic treatments, metformin can be used in conjunction with behavioural obesity management interventions.
- For patients with severe mental illness who gain weight on antipsychotic treatments, glucagon-like peptide-1 (GLP-1) receptor agonists have the most safety and efficacy evidence among medications indicated for chronic obesity management. Cost and access may be a barrier for PLWO wishing to use this class of medications.
- · Behavioural obesity management therapy, ideally as part of a multidisciplinary treatment approach, can be effective in managing weight in individuals with co-occurring mental illness. The intensity of the behavioural intervention will need to increase for individuals with more severe psychopathology in the context of obesity.
- · The current approved obesity medications may be helpful in patients with a mental illness and should be used based on clinical appropriateness, safety, access and cost.
- · For people with obesity and BED, evidence suggests that lisdexamfetamine, topiramate and second-generation antidepressants (duloxetine and bupropion) may be effective in reducing eating pathology. However, all are off-label pharmacological interventions in South Africa. While these medications are effective in reducing eating pathology, their effect on weight loss is less certain.
- · Referral for more intense (i.e. long-term) and behavioural interventions, such as cognitive behavioural therapy (CBT), should be considered for individuals with significant binge-eating and depressive symptoms in the context of obesity.
- Individuals undergoing metabolic and bariatric surgery (MBS) should undergo a pre-surgical mental health screen by a qualified MBS clinician with experience in mental health to identify early risk factors for poor weight loss outcomes or mental health deterioration, and any mental health comorbidities. The presence of an active psychiatric disorder does not exclude patients from MBS, but warrants further assessment of potential impact on long-term weight loss.
- · Assessment should continue following surgery and can include the use of either clinician-administered or patient self-report measures.
- · PLWO should be monitored for alcohol and substance use changes, as well as self-harm and suicidal ideation, after MBS. They should be informed about altered alcohol metabolism following Roux-en-Y gastric bypass.

- · We recommend psychiatric medication monitoring following MBS owing to potential changes in drug absorption and therapeutic effect, especially with malabsorptive surgical procedures. For psychiatric medications with a narrow therapeutic index, use of available protocols to manage perioperative levels is warranted.
- · Postoperative behavioural and psychological interventions to support maintenance of weight loss and to prevent significant weight regain may be useful.
- · For PLWO regaining weight after MBS, psychosocial interventions should be used to address comorbid psychiatric symptoms interfering with obesity management, such as depression and eating psychopathology, and to support behavioural change in the long term.
- · MBS teams should focus on strategies to improve patient engagement during the post-surgery follow-up period, especially for high-risk patient groups.

KEY MESSAGES FOR PEOPLE LIVING WITH OBESITY

- · There are clear links between mental illness and weight. Please ensure that your healthcare provider is aware of the treatments you are taking for your mental health issues.
- · Individuals with co-occurring mental illness should receive behavioural therapy in combination with a biopsychosocial treatment approach to manage obesity.
- · Antipsychotic medications should not routinely be prescribed (especially on a long-term basis) for issues like sleep and anxiety. Cognitive behavioural therapy or other psychological interventions should be the first-line treatment approach where appropriate.
- · If you are gaining or have gained weight when taking an antipsychotic medication and changes in behaviour have not been sufficient, metformin can be used to help prevent further weight gain and/or reduce weight. Although evidence supports the use of metformin to prevent antipsychotic-related weight gain, it is not licensed for this indication in South Africa.
- · Early studies suggest that, among medications approved for long-term obesity management in South Africa, weight loss medications of the GLP-1 (glucagon-like peptide-1) agonist class (such as liraglutide and semaglutide) have the most evidence to support their use to help reduce weight gained from antipsychotic medications.
- · If you have gained weight while taking an antipsychotic medication, you can ask your doctor if there might be another antipsychotic with a lower weight gain risk. This should be a decision made together with your doctor, taking into careful consideration other potential side-effects/tolerability and the risk of mental health worsening.
- · If you have binge-eating disorder, two medications (lisdexamfetamine and topiramate) can be helpful to reduce both binge episodes and weight, usually in conjunction with psychological treatments. These medications are not licensed for this indication in South Africa.
- · If you are undergoing metabolic and bariatric surgery, early occurrence of psychiatric symptoms and eating difficulties after surgery could negatively influence your weight loss. All individuals living with obesity undergoing surgery should undergo mental health screening before surgery and have a multidisciplinary team identify and manage psychiatric symptoms and eating difficulties arising after surgery.
- · For all individuals living with obesity who are undergoing metabolic and bariatric surgery, it is important to understand the increased risk of substance use problems (such as alcohol) and the potential risk of suicide after surgery. All these individuals should be aware of changes in how alcohol can affect them, changes in psychiatric medication absorption, and the importance of mental health monitoring after surgery.

RECOMMENDATIONS

- 1. We recommend regular monitoring of weight, glucose and lipid profile in people with a mental health diagnosis who are taking medications associated with weight gain (Level 3, Grade C).[1,2]
- 2. Healthcare providers can consider both efficacy and effects on body weight when choosing psychiatric medications (Level 2a, Grade B).[3-15]
- 3. Metformin and psychological treatment, such as CBT, should be considered for prevention of weight gain in people with severe mental illness who are treated with antipsychotic medications associated with weight gain (Level 1a, Grade A).[16,17]

Much like trying to untangle the aetiology of obesity, trying to understand the association between weight gain and mental illness is currently beyond our ability.[18] We are aware of vulnerabilities that increase risk, both of weight gain in those with mental illness and, conversely, mental health issues in those with weight issues, and we know the end result is that the presence of one illness can impact on the other.[19,20] We also know that unconscious bias, a factor that those with obesity and mental illness often face, is compounded when the conditions co-occur and can be especially damaging in medical settings.[21] This has profound effects on patient care and medical outcomes and, from a broader systems perspective, on healthcare costs and access to care.[22]

Although it is generally understood that individuals with mental illness, especially serious mental illness, have an increased risk of being obese and/or overweight,[23] the picture in South Africa (SA) is less clear. There is a paucity of local research on this topic, and the authors were unable to find robust literature on the interplay of obesity and major depressive disorder (MDD) or anxiety disorders in SA. A SANHANES-1 (South African National Health and Nutrition Examination Survey) study that reviewed the association of psychological distress (measured by the Kessler Psychological Distress Scale) with body mass index (BMI) found a weak association between poorer mental health and an unhealthy BMI. Indeed, psychological distress was associated with being underweight.[24] In a single case-controlled, cross-sectional study on serious mental illness and metabolic syndrome, Saloojee et al. [25] did not find individuals with serious mental illness to have significantly higher BMIs than controls. These findings were in keeping with those in a systematic review and meta-analysis of the international prevalence of obesity and severe mental illness in which Afzal et al.[23] found a similar lack of data and a relatively lower risk of obesity with serious mental illness for the entire sub-Saharan Africa region. There may also be a lack of knowledge of the confluence of the two illnesses among clinicians.[2] In a study performed in a large metropole, fewer than 1% of attendees with severe mental illness at a district hospital had received any screening for metabolic syndrome. [26]

The evidence-based recommendations in this chapter are intended to serve as a guideline to ensure that healthcare providers (HCPs) are evidence informed and can provide the best care to an often complicated and marginalised patient group.

The mechanisms underlying the association between mental illness and early-onset and sustained weight gain are multifaceted and involve both biological and psychological factors, superimposed on the background of social health determinants, and medication and metabolic side-effects. [18] This association is supported by clinical and epidemiological research from North America reporting prevalence rates of overweight and obesity of 25 - 60% for bipolar disorder, 30 - 70% for schizophrenia and 20 - 50% for depression. [27,28] Links have also been made between overweight and obesity and bingeeating disorder (BED), attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD).[18,29] Given the high prevalence of mental health issues in people living with obesity (PLWO), it is not surprising that mental illness is more prevalent in those presenting with weight-related comorbidities and those seeking obesity management treatment. It is therefore critical that HCPs involved in the care of PLWO prioritise clients' mental health needs as well.[30]

Being aware of the association between mental illness and obesity is not simply an academic exercise. Individuals with mental illness have increased morbidity and mortality, in some cases with a risk of premature death of up to 15 years, because of medical comorbidities, many of which are linked to weight gain.[31] It can be challenging to address both the physical and mental health needs of this population, but given the interaction between the two conditions it should be considered a priority, both at an individual and a health systems level. Research has indicated that individuals with mental health issues often fall through the cracks, and this outcome can be prevented with a standardised screening approach.[32]

There is a clear and irrefutable link between psychiatric medications and weight gain. While this association has been most clearly studied and documented in respect of antipsychotics, [7] medications used in the treatment of bipolar disorder, MDD and anxiety have all been shown to be associated with significant weight gain.^[7] While it is important that medication efficacy be the first priority, it is also important that tolerability be considered. There is significant premature mortality secondary to physical health problems documented in individuals with mental health problems. Also, weight gain secondary to medication use is a common cause of medication discontinuation in patients requiring psychotropic medications.[33] It is therefore important that HCPs be aware of the side-effect profile associated with different psychiatric medications, and consider both efficacy and tolerability in deciding on appropriate short-term and long-term psychopharmacology.

Second-generation antipsychotics are approved by the US Food and Drug Administration (FDA), and in SA by the South African Health Products Regulatory Authority (SAHPRA), for the treatment of schizophrenia, bipolar disorder and depression under drugspecific circumstances. While second-generation antipsychotics have been argued to have a lower propensity to cause extrapyramidal side-effects compared with their first-generation counterparts when used on-label, they are indisputably associated with significant

metabolic sequelae, including weight gain, glucose dysregulation and dyslipidaemia.[34,35]

Off-label use of antipsychotic medications: What are the safety and efficacy implications for metabolic comorbidity?

The rate of off-label use of antipsychotics in SA is unknown. In Canada, prescription of antipsychotic medications doubled, exceeding seven million prescriptions annually, between 2005 and 2012.[36] Concerningly, the most rapid increases in prescription patterns were attributed to use in off-label indications for which clinical evidence is less certain, including ADHD, anxiety, dementia, eating disorders, insomnia, obsessive-compulsive disorder, personality disorders, PTSD, substance use disorders and Tourette syndrome. A meta-analysis and several individual studies reported significant occurrence of metabolic adverse effects in the context of off-label antipsychotic use, including increased appetite and weight gain, increased triglyceride abnormalities, and an increased risk of precipitating diabetes.[37,38] In elderly patients with dementia, use of antipsychotics has been associated with an increased risk of mortality and cardiovascular events.[39-41]

Pharmacological interventions in mental illness and comorbid overweight or obesity

While behavioural interventions are first-line approaches for addressing metabolic comorbidities, these are often not sufficient on their own, and pharmacological interventions must be considered. Pharmacological interventions approved for treatment of obesity in the general population are likely to have a place in the management of PLWO with mental illness, keeping in mind population-specific considerations of efficacy and safety. For example, the combination naltrexone/bupropion may not be the first-line choice for patients with bipolar disorder owing to the risk of mania induction. [42]

Because mechanisms driving obesity may be different in patients with severe mental illness compared with the general population (i.e. psychotropic medications affect neurotransmitters associated with metabolic homeostasis), treatments not approved by licensing bodies for obesity treatment have been studied off-label in this population. Because antipsychotics, as well as antidepressants and mood stabilisers, carry a differential weight gain risk, lower-liability medications can also be considered as a strategy to target metabolic comorbidity in this population.[43,44]

Although antipsychotics are the psychotropics typically associated with the highest risk of weight gain, where switching these agents has been studied with regard to weight-related effects, prevention of further weight gain (as opposed to reversal of weight effects) tends to be found. [45] In a recent meta-analysis of randomised controlled trials (RCTs) and uncontrolled before-and-after studies, switching to aripiprazole was only associated with significant average reductions in weight of -5.52 kg in RCTs and -2 kg in before-and-after studies. Although a worsening of psychotic symptoms was not observed in these studies, average study duration may have been too short to adequately observe significant changes.[46]

Therefore, particularly when moving from high-risk agents (e.g. olanzapine), one of the primary benefits of switching is by effecting a plateau of weight gain, and the largest benefit is likely to be gained when switching is undertaken early in antipsychotic treatment. [45] While switching strategies has a place in clinical practice, the decision to switch antipsychotic drugs must be considered on a case-by-case

basis in the context of efficacy of the current regimen, tolerability of both current and potential new antipsychotic, and patient choice. Furthermore, since dose reduction alone has not been clearly effective in reversing weight gain associated with antipsychotic use, it is not a recommended strategy in this context. [43,44,47]

In other words, where weight loss is deemed necessary, additional interventions (such as pharmacological treatments) will probably be required in addition to switching of psychotropic medications. Please refer to specialist psychiatric resources, such as the Maudsley Prescribing Guidelines, for information on effective medications with a lower associated risk of weight gain. Ensuring that medication changes are carefully monitored and appropriate will be best served by ongoing collaboration with the patient's current mental HCPs. [45]

How effective are pharmacological interventions for obesity in patients with mental illness?

Agents currently approved for the treatment of obesity in SA include liraglutide (Saxenda®) and semaglutide (Wegovy®), both glucagon-like peptide-1 (GLP-1) receptor agonists (RAs); naltrexone/bupropion (Contrave®); phentermine (Duramine®); and orlistat (Xenical®). Below is a summary of those interventions that, in randomised controlled studies, show significant and consistent results (most interventions show small to medium effect sizes). [48] None of these agents is licensed in SA specifically for the management of weight gain induced by psychotropic medication, nor have they been extensively researched in individuals with comorbid mental illness. Furthermore, since obesity is a complex illness requiring a multidisciplinary approach, we would caution mental HCPs against prescribing medications for the treatment of obesity without the support of a multidisciplinary team. (See the chapter 'Pharmacotherapy in obesity management'.)

Metformin

Across several published meta-analyses of RCTs in patients with schizophrenia spectrum disorders, metformin consistently emerges as an effective and safe intervention resulting in modest weight loss compared with placebo (average of 3.5 kg), as well as improvements in lipid and insulin sensitivity parameters. [16,17,49,50] A meta-analysis that included individuals with mood disorders receiving mood stabilisers found similar beneficial effects of metformin over placebo.^[51] Similar findings have been reported in two meta-analyses that assessed all RCTs investigating metformin for antipsychoticinduced weight gain. The effect of metformin may be greater in first-episode patients compared with chronically ill populations. [17,52] As noted by the authors who adapted this guideline for Ireland, the ability of metformin to induce a weight gain plateau early during antipsychotic treatment may be its most significant benefit. [45] The plateau of weight gain on antipsychotic treatment may otherwise take months (olanzapine) to years (clozapine) to occur, and is as yet unknown for many other antipsychotics.^[53,54] Please refer to prescribing guidelines for further information on the recommended use of metformin for this indication. [55]

GLP-1 receptor agonists

Three RCTs have examined GLP-1 RAs (liraglutide) in PLWO with schizophrenia spectrum disorders taking antipsychotic medications.[56-58] Data from these trials were recently analysed in a participant-level data meta-analysis (N=141 participants). Endpoint weight for GLP-1 RAs was 3.61 kg lower than for controls. BMI, glycated haemoglobin (HbA1c), fasting glucose and visceral adiposity were all lower for the GLP-1 RA group. Weight loss in the GLP-1 RA group appeared to be greater for participants on clozapine or olanzapine, and for longer study endpoints. GLP-1 RAs were well tolerated, with no safety concerns apart from more common reports of nausea in the treatment group.^[56] This study did not include enough participants or continue over a long enough period to detect uncommon effects that may be associated with GLP-1 RAs in the general population. However, to date, neuropsychiatric effects have not been noted in the use of these agents in a larger study, [59] and indeed, emerging evidence suggests that these agents may in fact have positive neuropsychiatric effects. [60] Access to this class of drugs is limited in SA, and cost is often a barrier to use.

Naltrexone/bupropion

Naltrexone/bupropion was examined in males with obesity and schizophrenia who were smokers, and showed no differences in weight change or smoking cessation rates compared with placebo. [61] In patients with schizophrenia using olanzapine, naltrexone alone (a component of naltrexone/bupropion), when compared with placebo in a small double-blind randomised clinical trial, was not associated with differences in BMI over a 12-week treatment period. [62] In 25 women with obesity and MDD, naltrexone/bupropion was found to modestly reduce both weight and depression scores.^[63]

Orlistat

Orlistat was examined in a double-blind RCT in patients with schizophrenia spectrum or bipolar disorder taking antipsychotics. [64] The data did not show a significant difference in body weight between groups.

Topiramate

Topiramate, approved in SA only for epilepsy and migraines, represents a component of the topiramate-phentermine combination approved in the USA by the FDA for obesity treatment. A recent meta-analysis of RCTs examined the use of topiramate in patients with schizophrenia spectrum disorders and reported superiority of topiramate compared with placebo with regard to weight (3.76 kg) and BMI (1.62 kg/m²) reduction.^[65] Overall, the side-effect profile was comparable to control groups, with the exception of paraesthesia, which was more common in topiramate-treated patients. The topiramate group also had small improvements in psychopathology. Similarly, a meta-analysis examining RCTs conducted in mixed populations of schizophrenia spectrum and mood disorders (bipolar disorder) found topiramate to be associated with weight loss compared with placebo (3.95 kg), with no safety concerns reported.^[51] Although cognitive disturbances have been linked with topiramate use (particularly in epilepsy populations), [66] these have not been sufficiently studied in schizophrenia spectrum disorders^[65] but are clearly an issue to be aware of in assessing tolerability. An open-label trial in patients with anxiety disorders who experienced weight gain with selective serotonin reuptake inhibitors (SSRIs) also found topiramate to be associated with weight loss and reported no safety concerns. [67] Of note, however, a recent year-long observational study on the use of anti-obesity medications in individuals with mental illness noted a persisting increase in both depressive symptoms and suicidal thinking in those who took topiramate. Although the numbers were small, this was a consistent finding in only the topiramate-treated group and would necessitate special attention and monitoring on the part of the prescribing clinician when considering using this agent. [68]

In summary, adjunctive off-label use of topiramate appears to be modestly effective to mitigate weight gain in the context of schizophrenia spectrum illnesses, although mood and suicidality may be an emerging concern.[16,49,51,65,68] However, larger studies of

extended treatment, and more detailed examination of potential adverse effects on cognition and mood, are required before topiramate can be recommended for routine use in the management of obesity in mental illness.

Phentermine

Although registered in SA as a weight loss medication, phentermine is only licensed for short-term use (<3 months) and is contraindicated, per the drug monograph, in individuals with 'agitated states or a history of psychiatric disorders including anorexia nervosa and depression' or a 'history of drug/alcohol abuse or dependence'. [69] It is therefore not recommended as a weight loss agent in those with mental illness.

Other off-label obesity interventions that may be effective in the treatment of antipsychotic-associated weight gain and obesity include aripiprazole and H, (histamine) receptor agonists such as nizatidine. However, the quality of the evidence for these interventions is low, making the effects uncertain. [16,49,50] A published meta-analysis investigating H₂ agonists in antipsychotic-induced weight gain failed to find differences in weight reduction compared with placebo.^[70] Recommendations on the use of most pharmacological agents are limited by the small number of studies utilising the agents, variability in the studies testing the same agent, and variable intensity and duration of the studies using the same interventional agent. Making a consensus statement on these treatments is currently challenging. We would caution against off-label prescribing of the majority of these agents until such time as the registration of these agents changes or further evidence emerges to robustly support their use in this population. Preference should be given to the use of metformin and GLP-1 RAs where applicable.

How effective are behavioural interventions for obesity in patients with mental illness?

In individuals with comorbid depression and obesity, behavioural obesity therapy has been studied alone and in combination with other treatments. Two RCTs comparing behavioural obesity therapy in combination with an additional psychological treatment, namely a behavioural intervention or cognitive behavioural therapy (CBT), resulted in comparable weight loss between groups and showed no advantage of combination treatment.^[71,72] The addition of depressionspecific interventions, such as behavioural activation therapy, to a behavioural lifestyle intervention aimed at weight loss may provide additional benefit compared with treatment with a behavioural lifestyle intervention alone for reducing depressive symptoms in PLWO.[71]

Significant research exists on the efficacy of behavioural treatments for PLWO with severe mental illness, including patients with psychotic illness and severe mood disorders. Interventions focused primarily on physical activity have shown inconclusive results related to weight loss in two meta-analyses. [73,74] A comprehensive meta-analysis by Caemmerer et al.[75] evaluated the effectiveness of non-pharmacological interventions for obesity management in individuals with severe mental illness across 17 included studies. This review consisted of CBT, psychoeducational interventions and nutrition and exercise interventions, with treatments lasting a mean of 19.6 weeks. The review demonstrated a mean difference in weight of -3.12 kg and a BMI reduction of -0.94 kg/m² overall across studies, with some studies showing sustained benefits at 8- to 52-week followup post intervention. CBT had a smaller effect than nutrition and/or exercise programmes. Analysis of moderating variables showed no

difference between prevention versus treatment studies, studies with interventions more or less than 3 months' duration, and individual versus group treatments. A second meta-analysis also confirmed the above results related to overall weight loss. However, it showed that prevention trials were slightly more effective than treatment interventions for obesity in severe mental illness. [76]

An additional meta-analysis focusing on pharmacological and behavioural interventions to improve cardiovascular risk factors in adults with severe mental illness analysed 10 studies using behavioural interventions, which included either lifestyle interventions or CBT.[77] Behavioural interventions resulted in a mean difference of -3.13 kg. A more recent meta-analysis involving 17 studies using a behavioural intervention for weight loss in PLWO with severe mental illness showed that interventions of <6 months' and >12 months' duration led to comparable weight loss.^[78] For these long-term behavioural interventions (>12 months), patients had more than 60% greater odds of achieving clinically significant weight loss (>5% weight loss) compared with controls. Bruins et al.[79] also evaluated the efficacy of behavioural interventions for PLWO and severe mental illness in a meta-analysis and showed improvements in specific cardiometabolic risk factors, namely waist circumference, triglycerides, fasting glucose and insulin. No effects were observed for blood pressure and cholesterol levels.

More recently, Speyer et al.[80] performed a systematic review, metaanalysis and meta-regression analysis looking at the mediators and moderators of treatment effects of lifestyle interventions for weight in individuals with serious mental illness. This work replicated other meta-analyses confirming that lifestyle interventions can lead to statistically significant weight loss, but concluded that these may not be clinically significant at a group level (average of 2.2 kg lost), and there was no effect on secondary cardiovascular outcomes. Heterogeneity was significant, study duration was generally short, and few of the trials were conducted outside Western countries.^[80]

In summary, the results of these meta-analyses suggest that behavioural interventions, including lifestyle, nutrition and physical activity changes, result in an average weight loss at a group level of 2.2 kg and a BMI reduction of -0.63 kg/m². Research is needed to further elucidate the optimal duration, type and intensity of behavioural interventions for weight loss in patients with severe mental illness. Negative results for weight loss from the STEPWISE study, which used group psychoeducation and behaviour-focused sessions, suggest that more intense and multidisciplinary interventions may be needed for long-term weight loss, especially for individuals with schizophrenia spectrum disorders.[81]

This raises the question of whether behavioural and lifestyle interventions alone are adequate to address obesity in individuals with severe mental illness, which may mirror the waning enthusiasm with which lifestyle interventions are recommended as a single stand-alone approach to obesity in individuals without mental illness.[82] However, it must be kept in mind that although the gains of lifestyle interventions for those with severe mental illness may not be clinically significant at the group level, some individuals may benefit significantly from these interventions and further excessive weight gain may be prevented. [80] Furthermore, physical activity has been shown to have positive preventive as well as treatment effects across a broad spectrum of mental disorders and may contribute to a general improvement in health apart from a weight loss effect. [83] We would therefore recommend that education and lifestyle interventions continue to be offered to this population until such time as the gaps in the research on this topic are addressed or better alternatives become available.

How effective are pharmacological treatments for obesity in binge-eating disorders?

Several studies have explored the effectiveness of various pharmacological interventions (antidepressants, appetite suppressants, stimulants and anticonvulsants) in patients with BED. Peat et al's [84] meta-analysis of placebo-controlled RCTs reported a significantly greater reduction in binge eating and related psychopathology for second-generation antidepressants (bupropion, SSRIs and duloxetine), lisdexamfetamine (a central nervous system stimulant originally marketed for ADHD) and topiramate (an anticonvulsant). Only topiramate and lisdexamfetamine (but not antidepressants) reduced weight compared with placebo in patients. Review of comparative effectiveness suggested that lisdexamfetamine was better at inducing binge abstinence compared with secondgeneration antidepressants. Weight as an outcome was not compared. In their meta-analysis of the efficacy of psychological and medical treatments for BED, Hilbert et al.[85] found that lisdexamfetamine positively affected both weight and binge-eating outcomes compared with placebo.

An issue with this work is that the studies predominantly included middle-aged females of white ethnicity living with overweight or obesity. Questions of generalisability beyond this population, and data on how long an individual might need to remain on treatment, remain unanswered. Furthermore, lisdexamfetamine (Vyvanse) and topiramate are not approved for treatment of BED in SA. Lisdexamfetamine is a central nervous system stimulant; efficacy and safety may not be generalisable to patients with a history of substance use disorders, suicide attempts, bipolar disorder or psychosis, as these populations could be more susceptible to abuse or mental deterioration. We recommend that use of these medications for the treatment of BED in individuals with obesity should be limited to clinicians with experience in the management of eating disorders. Non-pharmacological interventions for BED are also effective and should be considered early in the treatment of BED as well. [86]

Given the high prevalence of psychiatric disorders in PLWO,[87] several studies have explored the impact of the bidirectional relationship of obesity and mental illness on the efficacy of behavioural interventions for weight loss and improvement in metabolic outcomes. Given that the most highly prevalent psychiatric disorders in obesity include MDD and BED, several studies have focused on the impact of behavioural and related psychosocial interventions in individuals with these comorbid mental illnesses.

How effective are behavioural interventions for patients with comorbid binge eating disorder and obesity?

Several studies have explored the effectiveness of behavioural interventions in patients with BED and obesity. However, a metaanalysis by Peat et al.[84] was limited to a qualitative analysis of study trials owing to heterogeneity in treatment outcome measures. Nonetheless, this review reported a significantly greater reduction in BMI with behavioural obesity therapy compared with therapist-led CBT, although this benefit was only found at the end of treatment, and the difference in BMI disappeared at follow-up. Moreover, behavioural obesity therapy had inconclusive and inferior results in comparison with CBT in terms of abstinence from binge eating and improvement in binge-eating frequency, respectively. In a metaanalysis by Hilbert et al., [85] psychotherapy and self-help interventions (largely CBT-based therapies) did not significantly affect weight loss or BMI in individuals with BED, although the effects on bingeeating pathology were significant with large effect sizes. The dose of behavioural therapy may also influence the effectiveness of therapy in reducing binge-eating severity in obesity, with current evidence indicating that high-moderate doses, consisting of 16 to 24 sessions, may be needed to adequately address binge eating. [88]

What is the impact of 'food addiction' on obesity?

Evidence from animal models suggests that ingredients from highly processed foods can result in addictive-like biological and behavioural responses,[89-91] such as food craving.[92,93] However, there is ongoing controversy about the construct, and the Diagnostic and Statistical Manual of Mental Disorders (DSM), 5th edition (DSM-5), has not recognised food addiction as an official diagnosis. Researchers have cautioned against equating obesity with food addiction[94] and have highlighted the need to better understand the impact of the 'food addiction' label for PLWO in terms of stigma, ethics and health policy issues. [95] (See the chapter 'The science of obesity'.)

How does mental illness affect metabolic and bariatric surgery outcomes?

Studies have demonstrated high lifetime rates of psychiatric illness in metabolic and bariatric surgery (MBS) patients, with rates approximating 70% when using structured psychiatric interviews.^[87,96] According to the Ontario Bariatric Network registry, rates of a current psychiatric diagnosis were found to be 51%.[97] In a meta-analysis of 52 studies reporting prevalence data, rates of any current mood disorder, BED and anxiety were 23%, 17% and 12%, respectively.^[98] There are few data available on the mental health aspects of individuals seeking MBS in the SA context. Van der Merwe et al. [99] reported on the gender-specific prevalence of 'neuropsychiatric symptoms' in their preoperative population in a private clinic. Diagnoses were made by the attending psychiatrist using DSM-IV-TR (4th edition, text revision) criteria, and it was found that 53% of females and 25% of males were depressed and 14.2% and 6.7%, respectively, suffered from anxiety. The authors commented that a history of eating disorders (including BED) was 'relatively low', but no further information or figures were included. Kruger-Steyn et al.[100] found a 22% rate of depression in a preoperative SA population at a state-funded institution. Depression was diagnosed and graded by the attending clinician, and the lack of universal rating and diagnostic criteria decreased validity. Although both studies noted rates of mental illness that were higher than the lifetime population prevalence of depression (9.8%) and any anxiety disorder (15.8%), [101] these findings are difficult to interpret owing to the lack of clarity surrounding diagnostic methodology. There are no data on mental health outcomes in SA postoperative populations.

Following MBS, data from the Longitudinal Assessment of Bariatric Surgery (LABS) Research Consortium have shown a significant reduction in any axis I psychiatric disorder (as per DSM IV-TR) at year two (16.8%) and year three (18.4%) after surgery, compared with pre-surgery rates (30.2%).[102] Moreover, MBS can result in improvements in cognition, most commonly memory and attention/ executive function. [103] Only post-surgery eating disorder symptoms have been associated with less weight loss after MBS in multiple studies.[102,104]

Increases in suicide and self-harm have been noted after MBS.[105,106] A meta-analysis identified a pooled prevalence of suicide of 0.3%, compared with 1.8% for the pooled prevalence of all-cause mortality after surgery. [107] A Canadian population-based study examining selfharm emergencies 3 years before and after MBS showed an increase in self-harm emergencies after surgery (3.63 v. 2.33 per 1 000 patientyears), with intentional overdose being the most common method. [105] Risk factors for self-harm included individuals aged 35 years or older, lower income status, and living in rural areas.

Studies have also identified an association between substance use disorders and MBS.[105] Rates of a lifetime substance use disorder in MBS candidates are 35.7%, with alcohol use disorder being observed in 33.2% of surgery candidates. [87] In a systematic review, the proportion of new-onset substance use after surgery among MBS patients ranged from 34.3% to 89.5%. [108] In this review, the most reliable predictor of postoperative substance use was a preoperative history of substance use.

Cigarette smoking and alcohol use disorders are common in MBS candidates. Cigarette smoking is problematic after surgery owing to risks of post-surgical ulcers. Although studies suggest that 28.6% of patients who were smoking before surgery quit after surgery, approximately 12% of PLWO were new-onset cigarette smokers after surgery.[108] In contrast, several studies have demonstrated an increased prevalence of new-onset alcohol use disorder after MBS. Rates of new-onset alcohol use disorder following Roux-en-Y gastric bypass (RYGB), for example, approximate 7 - 8% at 2 years after surgery. [109,110] RYGB is associated with a higher risk of alcohol use disorder after surgery compared with laparoscopic adjustable gastric banding.[111] This study showed an adjusted hazard ratio (AHR) of 2.08 for incident alcohol use disorder after surgery, and an AHR of 1.76 for incident illicit drug use. It has been suggested that increased alcohol use disorders may be related to altered alcohol pharmacokinetics after RYGB versus other surgeries.[112]

Limited data are available on opioid use disorders related to MBS, but preliminary data suggest that 4% of patients could become chronic opioid users after MBS.[113,114] Risk factors for chronic postsurgery opioid use are higher pre-surgery total days of opioid use, and pre-surgery use of non-analgesics, anti-anxiety medications and tobacco.[113,114] Further research is needed to clearly elucidate rates and predictors of opioid use in MBS populations.

How do psychiatric symptoms affect weight loss after MBS?

Several studies have attempted to assess mental health and eating psychopathological predictors of MBS outcomes. A meta-analysis did not find an association between pre-surgery psychiatric disorders and weight loss outcomes after MBS. [98] Moreover, a review suggests that pre-surgery psychosocial variables such as cognitive impairment and personality variables (e.g. high neuroticism) may be associated with reduced weight loss after MBS, although the latter may be more closely linked to eating pathology than weight loss directly.[115] Depressive symptoms after MBS have also been associated with reduced weight loss after surgery. However, results from additional studies have shown conflicting results.[116-118] In addition, conflicting results suggest that pre-surgical complex psychiatric illness is not clearly associated with poor weight loss outcomes after surgery. [115,119] There are therefore limited data on clear pre-surgery psychosocial predictors of weight loss outcomes related to MBS.

Further, studies have identified preliminary evidence suggesting that early adaptation to the eating changes required with MBS may be an early indicator of weight loss. This is reinforced by 3-year data from a large multi-site study demonstrating that, although overall eating pathology declines after surgery, those individuals who had higher eating pathology after surgery experienced less weight loss after MBS.[120] These findings were replicated in a postoperative

cohort study in Canada that showed that binge-eating symptoms at 1 year after surgery were a predictor of reduced total percentage weight loss at 2 years after surgery. [104] Additional longitudinal studies are needed, but existing data suggest that MBS programmes should continue with ongoing monitoring of eating-related symptoms after surgery.

What tools can assist with assessment of psychiatric conditions before MBS and post-surgery monitoring?

Recent guidelines recommend a comprehensive psychosocial assessment before MBS to identify risk factors and for proactive identification of potential postoperative challenges that could be problematic after surgery. It is further recommended that such assessments be performed by a mental health clinician with experience in the care of MBS patients.^[121] Psychosocial assessment should be conducted using a clinical interview and can be guided by such resources as the Boston Interview for Gastric Bypass assessment. [122] In addition, an interprofessional risk assessment tool called the Toronto Bariatric Interprofessional Psychosocial Assessment Suitability Scale (BIPASS) can provide a standardised approach to pre-surgery psychosocial assessment and can inform risk stratification before surgery. [123] Moreover, ongoing psychosocial monitoring is recommended given the influence of postoperative psychopathology on weight loss and psychiatric outcomes.

Patient self-reporting tools can be used to assist with pre- and postsurgery assessment of psychiatric symptoms. Currently, there is no single robust assessment tool that assesses all psychosocial domains during the preoperative assessment. [124] In a 2015 systematic review, the Master Questionnaire, a 56-item true/false questionnaire, was identified as the only tool that assessed multiple eating behaviour domains in PLWO.[124] In this same review, the Binge Eating Scale was identified as having the most support for assessing bingeeating symptoms in patients undergoing MBS.[124] A second review of patient self-report measures recommended the use of the Binge Eating Scale, the Night Eating Questionnaire and the Eating Disorder Examination Questionnaire to assess eating psychopathology in patients undergoing MBS.[125] The PHQ-9 (Patient Health Questionnaire-9) and the Alcohol Use Disorders Identification Test are recommended for assessing depressive symptoms and alcohol use, respectively, in MBS candidates. [125,126] However, further research is needed to fully establish self-report patient measures with robust psychometric properties in assessing eating psychopathology in MBS patient populations, especially in the unique post-surgery context.[127]

How are psychiatric medications affected by MBS?

Antidepressants are the most commonly prescribed psychotropic medication in MBS candidates, with accounts of up to 35% of a cohort of 2 146 patients in the LABS-2 study. [128] MBS procedures, whether restrictive or malabsorptive, can have an impact on drug absorption, distribution metabolism or excretion. [129]

Although the literature is far from robust, antidepressants are the most studied class of psychotropic medications in the MBS population. Despite small sample sizes, studies have demonstrated evidence of reduced bioavailability after surgery, specifically with malabsorptive procedures such as RYGB. Antidepressants such as sertraline and duloxetine have shown reduced antidepressant plasma concentration following MBS compared with controls.[130] HCPs therefore have to be vigilant and make sure that MBS patients do not exhibit discontinuation symptoms or worsening of depressive

symptoms, especially in the course of at least the first postoperative year.[131]

The impact of psychiatric medications on patient outcomes varies with the type of psychiatric medication and the therapeutic index of the medication. Anecdotal reports indicate that individuals may be at risk of antidepressant discontinuation syndrome due to drops in therapeutic levels of antidepressant early on after surgery. These symptoms are significant, as they may be mistaken as dumping syndrome, and they should be assessed in the early postoperative phase. [132]

In addition, mood stabilisers require special attention owing to the frequent comorbidity of obesity and mood disorders and the significant risk of acute relapse with subtherapeutic levels. Owing to its narrow therapeutic index, management of lithium could be challenging in the MBS population because of unpredictable absorption, preoperative liquid diets, possible fluid and salt shifts, and postoperative limited oral intake. Cases of lithium toxicity as well as subtherapeutic levels have been described in the literature, and perioperative lithium protocols have therefore been developed to improve clinician management of the drug.[133]

Data on use of antipsychotics in the MBS population are limited to case reports. However, it is important for clinicians to be aware of possible pharmacokinetic changes due to MBS procedures, as well as the metabolic adverse effects of these medications. For example, individuals taking ziprasidone or lurasidone may have inconsistent absorption owing to low calorie intake in the perioperative period. [134]

HCPs should work collaboratively with patients' existing mental HCPs to ensure that alternative antipsychotic options have been explored when preparing for MBS. Antipsychotics associated with a high risk of weight gain should be reviewed if already prescribed and avoided where possible in patients with a history of MBS.[45]

What is the evidence for psychosocial interventions to support weight loss after MBS?

There are some contrasting results regarding the impact of psychological interventions on weight loss after MBS. While studies have examined the effectiveness of pre-surgery behavioural and structured psychological interventions on weight loss outcomes, results have been inconclusive in the pre-surgery phase. For example, psychological support focused on behaviour change and modifying cognitions before and after surgery had no impact on weight loss as measured by BMI.[135] In a systematic review, behavioural interventions delivered with MBS improved weight loss outcomes, and although the number of studies was limited, the data suggest that postoperative psychological interventions had a greater effect.^[136] Moreover, a meta-analysis of five studies also showed greater weight loss after surgery when surgery was combined with postoperative behavioural interventions. [137] The optimal time to initiate adjunctive behavioural interventions is therefore after surgery, but before significant weight regain has occurred.[138]

Specific psychological treatment modalities have been examined in MBS patient populations. These interventions include CBT (in person or remotely delivered via telephone), [118,139] acceptance commitment therapy,[140] mindfulness-based therapies,[141] and other psychological modalities that have improved eating pathology and psychological distress after surgery in the short term. Despite these symptom benefits, these psychological treatments have not translated to long-term post-surgery improvements in weight loss outcomes.

What factors affect adherence and engagement in MBS aftercare?

Poor adherence to post-surgical aftercare continues to challenge

surgical practices. Regular postoperative follow-up for MBS patients is important to detect nutritional deficiencies and post-surgery eating difficulties, and to optimise weight loss.[142,143] Despite high rates of attrition from MBS aftercare programmes, only a few studies have explored the reasons for non-attendance. Studies report high followup loss rates ranging from 10% to 80%, with estimates approximating 50% in the first postoperative year and only 41% attending year two follow-up appointments.[144-146] Possible factors associated with poor postoperative appointment attendance include higher preoperative weight, younger age, family-related problems, work problems or unemployment, lack of insurance coverage, avoidant attachment (relationship) style, and longer distance to travel. $^{\tiny [142,145-148]}$

Although there is no consensus regarding the reasons for patient non-adherence to recommended follow-up after MBS, a qualitative study exploring factors influencing patients' decisions to attend postoperative aftercare identified several variables.[149] Patients who stopped attending post-surgery follow-up appointments:

- · Had greater confidence in their primary care physician's ability to manage their MBS care
- · Had challenges with travel distance in terms of time and financial
- · Felt that they failed to achieve weight-loss goals
- · Perceived that follow-up had limited utility to their current care.

Additional studies are needed to further identify potential factors contributing to follow-up attrition.

Difficulties with patients' adherence to behavioural changes and the postoperative regimen have also been studied in the literature. Poor dietary adherence has been associated with baseline depressive symptoms and the presence of BED.[150] Moreover, higher attachment (relationship) anxiety and younger age (i.e. adolescents) have also been associated with poor adherence to postoperative vitamins. [148,150] Interventions to improve patient engagement and adherence to MBS follow-up recommendations have not been well studied. Interventions that have the potential to improve collaborative engagement between MBS multidisciplinary teams and general care/primary services could be helpful.[45]

Acknowledgement. 'The role of mental health in obesity management' is adapted from the Canadian Adult Obesity Clinical Practice Guideline (the 'Guideline'), which Obesity Canada owns and from whom we have a licence. SAMMSS adapted the Guideline having regard for relevant context affecting South Africa using the ADAPTE Tool.

SAMMSS acknowledges that Obesity Canada and the authors of the Guideline have not formally reviewed 'The role of mental health in obesity management' and bear no responsibility for changes made to such chapter, or how the adapted Guideline is presented or disseminated. Therefore, such parties, according to their policy, disclaim any association with such adapted materials. The original Guideline may be viewed in English at: www.obesitycanada.ca/guidelines

Author contributions. KM adapted the Canadian guideline, with extensive editing of the text. JL helped significantly with review and editing. All authors edited and approved the final version of the chapter.

- 1. Morin AK. Off-label use of atypical antipsychotic agents for treatment of insomnia. Ment Health Clin 2014;4(2):65-72. https://doi.org/10.9740/mhc.n190091
- 2. Ludwick JJ, Oosthuizen PP. Screening for and monitoring of cardio-metabolic risk factors in outpatients with severe mental illness in a primary care setting. Afr J Psychiatry (Johannesbg) 2009;12(4):287-292. https://doi.org/10.4314/ajpsy.v12i4.49047
- 3. Arterburn D, Sofer T, Boudreau DM, et al. Long-term weight change after initiating second-generation
- antidepressants. J Clin Med 2016;5(4):48. https://doi.org/10.3390/jcm5040048

 4. Correll CU, Detraux J, de Lepeleire J, de Hert M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015;14(2):119-136. https://doi.org/10.1002/wps.20204

- 5. Thompson A, Hetrick SE, Alvarez-Jimenez M, et al. Targeted intervention to improve monitoring of antipsychotic-induced weight gain and metabolic disturbance in first episode psychosis. Aust N Z J Psychiatry 2011;45(9):740-748. https://doi.org/10.3109/00048674.2011.595370
- 6. Patten SB, Williams JV, Lavorato DH, Khaled S, Bulloch AGM. Weight gain in relation depression and antidepressant medication use. I Affect Disord 2011;134(1-3):288-293, https://doi. org/10.1016/j.jad.2011.06.027
- 7. Chouinard VA, Pingali SM, Chouinard G, et al. Factors associated with overweight and obesity in schizophrenia, schizoaffective and bipolar disorders. Psychiatry Res 2016;237:304-310. https://doi. org/10.1016/j.psychres.2016.01.024
- 8. Fjukstad KK, Engum A, Lydersen S, et al. Metabolic abnormalities related to treatment with selective erotonin reuptake inhibitors in patients with schizophrenia or bipolar disorder. J Clin Psychopharmacol 2016;36(6):615-620. https://doi.org/10.1097/JCP.0000000000000582
- 9. Smits JA, Rosenfield D, Mather AA, Tart CD, Henriksen C, Sareen J. Psychotropic medication ediates the relationship between mood and anxiety disorders and obesity: Findings from nationally representative sample. J Psychiatr Res 2010;44(15):1010-1016. https://doi.org/10.1016/j.
- 10. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: A meta-analysis. PLoS ONE 2014;9(4):e94112. https://doi.org/10.1371/journal.pone.0094112
- 11. Strassnig M, Kotov R, Cornaccio D, Fochtmann L, Harvey PD, Bromet EJ. Twenty-year progression of ss index in a county-wide cohort of people with schizophrenia and bipolar disorder identified at their first episode of psychosis. Bipolar Disord 2017;19(5):336-343. https://doi.org/10.1111/bdi.12505
- Arterburn D, Wood GC, Theis MK, et al. Antipsychotic medications and extreme weight gain in two health systems. Obes Res Clin Pract 2016;10(4):408-423. https://doi.org/10.1016/j.orcp.2015.08.012
- 13. Vandenberghe F, Gholam-Rezaee M, Saigi-Morgui N, et al. Importance of early weight changes to predic long-term weight gain during psychotropic drug treatment. J Clin Psychiatry 2015;76(11):e1417-e1423 ://doi.org/10.4088/JCP.14m09358
- 14. Correll CU, Robinson DG, Schooler NR, et al. Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders: Baseline results from the RAISE-ETF study. JAMA Psy 2014;71(12):1350-1363. https://doi.org/10.1001/jamapsychiatry.2014.1314
- 15. Boudreau DM, Arterburn D, Bogart A, et al. Influence of body mass index on the choice of therapy for depression and follow-up care. Obesity (Silver Spring) 2013;21(3):E303-E313. https://doi.org/10.1002/ v 20048
- 16. Mizuno Y, Suzuki T, Nakagawa A, et al. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: A systematic review and meta-analysis Schizophr Bull 2014;40(6):1385-1403. https://doi.org/10.1093/schbul/sbu030
- 17. Zheng W, Li XB, Tang YL, Xiang YQ, Wang CY, de Leon J. Metformin for weight gain and metabolic abnormalities associated with antipsychotic treatment: Meta-analysis of randomized placebo-controlled
- trials. J Clin Psychopharmacol 2015;35(5):499-509. https://doi.org/10.1097/JCP.00000000000000392

 18. Taylor VH, McIntyre RS, Remington G, Levitan RD, Stonehocker B, Sharma AM. Beyond pharmacotherapy: Understanding the links between obesity and chronic mental illness. Can J Psychiatry 2012;57(1):5-12. https://doi.org/10.1177/070674371205700103
- Calkin C, van de Velde C, Ruzickova M, et al. Can body mass index help predict outcome in patients with bipolar disorder? Bipolar Disord 2009;11(6):650-656. https://doi.org/10.1111/j.1399-5618.2009.00730.x
 Kloiber S, Ising M, Reppermund S, et al. Overweight and obesity affect treatment response in major depression. Biol Psychiatry 2007;62(4):321-326. https://doi.org/10.1016/j.biopsych.2006.10.001
- Pearl RL, Puhl RM. Weight bias internalization and health: A systematic review. Obes Rev 2018;19(8):1141-1163. https://doi.org/10.1111/obr.12701
- Mulligan K, McBain H, Lamontagne-Godwin F, et al. Barriers to effective diabetes management a survey of people with severe mental illness. BMC Psychiatry 2018;18(1):165. https://doi.org/10.1186/ s12888-018-1744-5
- 23. Afzal M, Siddiqi N, Ahmad B, et al. Prevalence of overweight and obesity in people with severe mental illness: Systematic review and meta-analysis. Front Endocrinol (Lausanne) 2021;12:769309. https://doi org/10.3389/fendo.2021.769309
- 24. Mchiza ZJ-R, Parker W-A, Hossin MZ, et al. Social and psychological predictors of body mass index among South Africans 15 years and older: SANHANES-1. Int J Environ Res Public Health
- 2019;16(20):3919. https://doi.org/10.3390/ijerph16203919 Saloojee S, Burns JK, Motala AA. Metabolic syndrome in South African patients with severe mental illness: Prevalence and associated risk factors. PLoS ONE 2016;11(2):e0149209. https://doi.org/10.1371/ journal.pone.0149209
- Saloojee S, Burns JK, Motala AA. Very low rates of screening for metabolic syndrome among patients with severe mental illness in Durban, South Africa. BMC Psychiatry 2014;14:228. https://doi rg/10.1186/s12888-014-0228-5
- Goldstein BI, Liu SM, Schaffer A, Sala R, Blanco C. Obesity and the three-year longitudinal course of
- bipolar disorder. Bipolar Disord 2013;15(3):284-293. https://doi.org/10.1111/bdi.12035 28. Avila C, Holloway AC, Hahn MK, et al. An overview of links between obesity and mental health. Curr
- Obes Rep 2015;4(3):303-310. https://doi.org/10.1007/s13679-015-0164-9
 29. Kivimaki M, Batty GD, Singh-Manoux A, et al. Association between common mental disorder and obesity over the adult life course. Br J Psychiatry 2009;195(2):149-155. https://doi.org/10.1192/bjp
- 30. Hasnain M, Vieweg WV, Hollett B. Weight gain and glucose dysregulation with second-generation antipsychotics and antidepressants: A review for primary care physicians. Postgrad Med 2012;124(4):154-167. https://doi.org/10.3810/pgm.2012.07.2577
- 31. Bradshaw T, Mairs H. Obesity and serious mental ill health: A critical review of the literature. Healthcare Basel) 2014;2(2):166-182. https://doi.org/10.3390/healthcare2020166
- 32. Hensel JM, Taylor VH, Fung K, Vigod SN. Rates of mental illness and addiction among highcost users of medical services in Ontario. Can J Psychiatry 2016;61(6):358-366. https://doi
- 33. Wong MM, Chen EYH, Lui SSY, Tso S. Medication adherence and subjective weight perception in patients with first-episode psychotic disorder. Clin Schizophr Relat Psychoses 2011;5(3):135-141. https:// doi.org/10.3371/CSRP.5.3.3
- 34. Thorpe J, Saeed S, Moodie EE, Klein MB; Canadian Co-infection Cohort Study (CTN222). Antiretroviral treatment interruption leads to progression of liver fibrosis in HIV-hepatitis C virus co-infection. AIDS 2011;25(7):967-975. https://doi.org/10.1097/QAD.0b013e3283455e4b
- Pillinger T, McCutcheon RA, Vano L, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020;7(1):64-77. //doi.org/10.1016/S2215-0366(19)30416-X
- 36. Pringsheim T, Gardner DM, Dispensed prescriptions for quetiapine and other second-generation antipsychotics in Canada from 2005 to 2012: A descriptive study. CMAJ Open 2014;2(4): E225-E232 s://doi.org/10.9778/cmajo.20140009
- 37. Maglione M, Maher AR, Hu J, et al. Off-label use of atypical antipsychotics: An update. Rockville, Md:
- Agency for Healthcare Research and Quality, 2011. Sep. Report No.: 11-EHC087-EF. PMID: 22132426. 38. Katzman MA, Brawman-Mintzer O, Reyes EB, Olausson B, Liu S, Eriksson H. Extended-release quetiapine fumarate (quetiapine XR) monotherapy as mainter nance treatment for generalized anxiety disorder: A long-term, randomized, placebo-controlled trial. Int Clin Psychopharmacol 2011;26(1):11-24. https://doi.org/10.1097/YIC.0b013e32833e34d9
- 39. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med 2009;360(3):225-235. https://doi.org/10.1056/NEJMoa0806994

- 40. Gill SS, Bronskill SE, Normand SL, et al. Antipsychotic drug use and mortality in older adults with Ann Intern Med 2007;146(11):775-786. https://doi.org/10.7326/0003-4819-146-11-200706050-00006
- 41. Schneider LS, Dagerman K, Insel PS. Efficacy and adverse effects of atypical antipsychotics for dementia Meta-analysis of randomized, placebo-controlled trials. Am J Geriatr Psychiatry 2006;14(3):191-210. https://doi.org/10.1097/01.JGP0000200589.01396.6d
- Tek C. Naltrexone HCl/bupropion HCl for chronic weight management in obese adults: Patient selection and perspectives. Patient Prefer Adherence 2016;10:751-759. https://doi.org/10.2147/PPA.S84778
- Marteene W, Winckel K, Hollingworth S, et al. Strategies to counter antipsychotic-associated weight gain in patients with schizophrenia. Expert Opin Drug Saf 2019;18(12):1149-1160. https://doi.org/10.1080/1 4740338.2019.1674809
- 44. Stroup TS, McEvoy JP, Ring KD, et al. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: Comparison of Antipsychotics for Metabolic Problems (CAMP). Am J Psychiatry 2011;168(9):947-956. https://doi.
- org/10.1176/appi.ajp.2011.10111609
 45. ASOI Adult Obesity Clinical Practice Guideline adaptation (ASOI version 1, 2022) by: O'Dwyer S, Allen S, Fitzgerald I, Moore S, Yoder R. Chapter adapted from: Taylor VH, Sockalingam S, Hawa R, Hahn M. https://asoi.info/guidelines/mentalhealth/ (accessed 21 October 2024).
- 46. Siskind D, Gallagher E, Winckel K, et al. Does switching antipsychotics ameliorate weight gain in patients with severe mental illness? A systematic review and meta-analysis. Schizophr Bull 2021;47(4):948-958. https://doi.org/10.1093/schbul/sbaa191
- 47. Speyer H, Westergaard C, Albert N, et al. Reversibility of antipsychotic-induced weight gain: A tematic review and meta-analysis. Front Endocrinol (Lausanne) 2021;12:577919. org/10.3389/fendo.2021.577919
- 48. Vancampfort D, Firth J, Correll CU, et al. The impact of pharmacological and non-pharmacological interventions to improve physical health outcomes in people with schizophrenia: A meta-review meta-analyses of randomized controlled trials. Focus (Madison) 2021;19(1):116-128. https://doi. org/10.1176/appi.focus.19103
- Choi Y-J. Efficacy of adjunctive treatments added to olanzapine or clozapine for weight control in patients with schizophrenia: A systematic review and meta analysis. ScientificWorldJournal 2015;2015:970730. https://doi.org/10.1155/2015/970730
- 50. Maayan L, Vakhrusheva J, Correll CU. Effectiveness of medications used to attenuate antipsychoticrelated weight gain and metabolic abnormalities: A systematic review and meta-analysis. Neuropsychopharmacology 2010;35(7):1520-1530. https://doi.org/10.1038/npp.2010.21
- Fiedorowicz JG, Miller DD, Bishop JR, Calarge CA, Ellingrod VL. Systematic review and meta-analysis of pharmacological interventions for weight gain from antipsychotics and mood stabilizers. Curr Psychiatry Rev 2012;8(1):25-36. https://doi.org/10.2174/157340012798994867
- 52. De Silva VA, Suraweera C, Ratnatunga SS, Dayabandara M, Wanniarachchi N, Hanwella R. Metformir in prevention and treatment of antipsychotic induced weight gain: A systematic review and meta-
- analysis. BMC Psychiatry 2016;16(1):341. https://doi.org/10.1186/s12888-016-1049-5
 53. Rummel-Kluge C, Komossa K, Schwarz S, et al. Head-to-head comparisons of metabolic side effects of second-generation antipsychotics in the treatment of schizophrenia: A systematic review and meta analysis. Schizophr Res 2010;123(2-3):225-233. https://doi.org/10.1016/j.schres.2010.07.012
- Bushe CJ, Slooff CJ, Haddad PM, Karagianis JL. Weight change by baseline BMI from three-year observational data: Findings from the Worldwide Schizophrenia Outpatient Health Outcomes Database. J Psychopharmacol 2013;27(4):358-365. https://doi.org/10.1177/0269881112473789
- 55. Fitzgerald I, O'Connell J, Keating D, Hynes C, McWilliams S, Crowley EK. Metformin in the management of antipsychotic-induced weight gain in adults with psychosis: Development of the first evidence-based guideline using GRADE methodology. BMJ Ment Health 2022;25(1):15-22. https:// oi org/10 1136/ebmental-2021-300291
- 56. Siskind D, Hahn M, Correll CU, et al. Glucagon-like peptide-1 receptor agonists for antipsychoticassociated cardio-metabolic risk factors: A systematic review and individual participant data meta-analysis. Diabetes Obes Metab 2019;21(2):293-302. https://doi.org/10.1111/dom.13522
- 57. Ishøy PL, Knop FK, Broberg BV, et al. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: A randomized, placebo-controlled trial. Diabetes Obes Metab 2017;19(2):162-171. https://doi.org/10.1111/dom.12795
- 58. Siskind DJ, Russell AW, Gamble C, et al. Treatment of clozapine-associated obesity and diabetes with exenatide in adults with schizophrenia: A randomized controlled trial (CODEX). Diabetes Obes Metab 2018;20(4):1050-1055, https://doi.org/10.1111/dom.13167
- O'Neil PM, Aroda VR, Astrup A, et al. Neuropsychiatric safety with liraglutide 3.0 mg for weight management: Results from randomized controlled phase 2 and 3a trials. Diabetes Obes Metab 2017;19(11):1529-1536. https://doi.org/10.1111/dom.12963
- 60. Xie Y, Choi T, Al-Aly Z. Mapping the effectiveness and risks of GLP-1 receptor agonists. Nat Med 2025;31(3):951-962. https://doi.org/10.1038/s41591-024-03412-w
- Lyu X, Du J, Zhan G, et al. Naltrexone and bupropion combination treatment for smoking cessation and weight loss in patients with schizophrenia. Front Pharmacol 2018;9:181. https://doi.org/10.3389/ fphar.2018.00181
- 62. Taveira TH, Wu WC, Tschibelu E, et al. The effect of naltrexone on body fat mass in olanzapine-treated schizophrenic or schizoaffective patients: A randomized double-blind placebo-controlled pilot study. J Psychopharmacol 2014;28(4):395-400. https://doi.org/10.1177/0269881113509904
- 63. Guerdjikova AI, Walsh B, Shan K, Halseth AE, Dunayevich E, McElroy SL. Concurrent improvement in both binge eating and depressive symptoms with naltrexone/bupropion therapy in overweight or obese subjects with major depressive disorder in an open-label, uncontrolled study. Adv Ther 2017;34(10):2307-2315. https://doi.org/10.1007/s12325-017-0613-9
- 64. Joffe G, Takala P, Tchoukhine E, et al. Orlistat in clozapine- or olanzapine-treated patients with overweight or obesity: A 16-week randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2008;69(5):706-711. https://doi.org/10.4088/jcp.v69n0503
 65. Goh KK, Chen CH, Lu ML. Topiramate mitigates weight gain in antipsychotic-treated patients with
- schizophrenia: Meta-analysis of randomised controlled trials. Int J Psychiatry Clin Pract 2019;23(1):14-32. https://doi.org/10.1080/13651501.2018.1449864
- 66. Lee S, Sziklas V, Andermann F, et al. The effects of adjunctive topiramate on cognitive function in patients with epilepsy. Epilepsia 2003;44(3):339-347. https://doi.org/10.1046/j.1528-1157.2003.27402.x
- Van Ameringen M, Mancini C, Pipe B, Campbell M, Oakman J. Topiramate treatment for SSRIinduced weight gain in anxiety disorders. J Clin Psychiatry 2002;63(11):981-984. https://doi. org/10.4088/jcp.v63n1104
 68. Tham M, Chong TW, Jenkins ZM, Castle DJ. The use of anti-obesity medications in people with
- mental illness as an adjunct to lifestyle interventions effectiveness, tolerability and impact on eating behaviours: A 52-week observational study. Obes Res Clin Pract 2021;15(1):49-57. https://doi.
- 69. iNova Pharmaceuticals, Duromine professional information, 2020, https://inovapharma.co.za/brands
- and-products/professional-information/ (accessed 23 December 2024).
 70. Kishi T, Iwata N. Efficacy and tolerability of histamine-2 receptor antagonist adjunction of antipsychotic treatment in schizophrenia: A meta-analysis of randomised placebo-controlled trials. Pharmacopsychiatry 2015;48(1):30-36. https://doi.org/10.1055/s-0034-1390478
- 71. Pagoto S, Schneider KL, Whited MC, et al. Randomized controlled trial of behavioral treatm comorbid obesity and depression in women: The Be Active trial. Int J Obes (Lond) 2013;37(11):1427-1434. https://doi.org/10.1038/ijo.2013.25

- 72. Linde JA, Simon GE, Ludman EJ, et al. A randomized controlled trial of behavioral weight loss treatment versus combined weight loss/depression treatment among women with comorbid obesity
- and depression. Ann Behav Med 2011;41(1):119-130. https://doi.org/10.1007/s12160-010-9232-2
 73. Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exerci interventions in schizophrenia patients. Psychol Med 2015;45(7):1343-1361. https://doi.org/10.1017/
- 74. Pearsall R. Smith DJ. Pelosi A. Geddes J. Exercise therapy in adults with serious mental illness: A systematic review and meta-analysis. BMC Psychiatry 2014;14:117. https://doi.org/10.1186/1471-244X-14-117
- 75. Caemmerer J, Correll CU, Maayan L. Acute and maintenance effects of non-pharmacologic interventions for antipsychotic associated weight gain and metabolic abnormalities: A meta-analytic comparison of randomized controlled trials. Schizophr Res 2012;140(1-3):159-168. https://doi. org/10.1016/j.schres.2012.03.017
- 76. Bonfioli E, Berti L, Goss C, Muraro F, Burti L. Health promotion lifestyle interventions for weight management in psychosis: A systematic review and meta-analysis of randomised controlled trials. BMC Psychiatry 2012;12:78. https://doi.org/10.1186/1471-244X-12-78
- Gierisch JM, Nieuwsma JA, Bradford DW, et al. Pharmacologic and behavioral interventions to improve cardiovascular risk factors in adults with serious mental illness: A systematic review and eta-analysis. J Clin Psychiatry 2014;75(5):e424-e440. https://doi.org/10.4088/JCP.13r08558
- 78. Naslund JA, Whiteman KL, McHugo GJ, Aschbrenner KA, Marsch LA, Bartels SJ. Lifestyle interventions for weight loss among overweight and obese adults with serious mental illness: A systematic review and meta-analysis. Gen Hosp Psychiatry 2017;47:83-102. https://doi.org/10.1016/j. enhosppsych.2017.04.003
- 79. Bruins J, Jörg F, Bruggeman R, Slooff C, Corpeleijn E, Pijnenborg M. The effects of lifestyle interventions on (long-term) weight management, cardiometabolic risk and depressive sympto in people with psychotic disorders: A meta-analysis. PLoS ONE 2014;9(12):e112276. https://doi. rnal.pone.0112276
- 80. Speyer H, Jakobsen AS, Westergaard C, et al. Lifestyle interventions for weight management in people rith serious mental illness: A systematic review with meta-analysis, trial sequential analysis, meta-regression analysis exploring the mediators and moderators of treatment effects. Psychother m 2019;88(6):350-386. http os://doi.org/10.1159/000502293
- 81. Holt RIG, Gossage-Worrall R, Hind D, et al. Structured lifestyle education for people with Front RC, Gossage-wortain K, mind D, et al. Structured inestyle cudaction for people will schizophrenia, schizoaffective disorder and first-episode psychosis (STEPWISE): Randomised controlled trial. Br J Psychiatry 2019;214(2):63-73. https://doi.org/10.1192/bjp.2018.167
- 82. Lingvay I, Cohen RV, le Roux CW, Sumithran P. Obesity in adults. Lancet 2024;404(10456):972-987 //doi.org/10.1016/S0140-6736(24)01210-8
- 83. Firth J, Solmi M, Wootton RE, et al. A meta review of 'lifestyle psychiatry': The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020;19(3):360-380. https://doi.org/10.1002/wps.20773
- 84. Peat CM, Berkman ND, Lohr KN, et al. Comparative effectiveness of treatments for binge-eating disorder: Systematic review and network meta-analysis. Eur Eat Disord Rev 2017;25(5):317-328. tps://doi.org/10.1002/erv.2517
- 85. Hilbert A, Petroff D, Herpertz S, et al. Meta-analysis of the efficacy of psychological and medical treatments for binge-eating disorder. J Consult Clin Psychol 2019;87(1):91-105. https://doi. org/10.1037/ccp0000358
- 86. National Institute for Health and Care Excellence (NICE). Eating disorders: Recognition and treatment. London: NICE, last updated 16 December 2020. https://www.nice.org.uk/guidance/ng resources/eating-disorders-recognition-and-treatment-pdf-1837582159813 (accessed 19 February
- 87. Mitchell JE, Selzer F, Kalarchian MA, et al. Psychopathology before surgery in the Longitudinal Assessment of Bariatric Surgery-3 (LABS-3) psychosocial study. Surg Obes Relat Dis 2012;8(5):533-541. https://doi.org/10.1016/j.soard.2012.07.001
- Ariel AH, Perri MG. Effect of dose of behavioral treatment for obesity on binge eating severity. Eat
- Behav 2016;22:55-61. https://doi.org/10.1016/j.eatbeh.2016.03.032

 89. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015;10(2):e0117959. https://doi.org/10.1371/journ pone.0117959
- Curtis C, Davis C. A qualitative study of binge eating and obesity from an addiction perspective. Eat Disord 2014;22(1):19-32. https://doi.org/10.1080/10640266.2014.857515
- Gilhooly CH, Das SK, Golden JK, et al. Food cravings and energy regulation: The characteristics of craved foods and their relationship with eating behaviors and weight change during 6 months of dietary energy restriction. Int J Obes (Lond) 2007;31(12):1849-1858. https://doi.org/10.1038/sj.ijo.0803672
- 92. Gearhardt AN, White MA, Masheb RM, Morgan PT, Crosby RD, Grilo CM. An examination of the $food \ addiction\ construct\ in\ obese\ patients\ with\ binge\ eating\ disorder.\ Int\ J\ Eat\ Disord\ 2012;45(5):657-663.\ https://doi.org/10.1002/eat.20957$
- entary on the associations among 'food addiction', binge eating disorder, and obesity: Overlapping conditions with idiosyncratic clinical features. Appetite 2017;115:3-8. https://doi. org/10.1016/j.appet.2016.11.001 Gearhardt AN, Hebebrand J. The concept of 'food addiction' helps inform the understanding
- of overeating and obesity: Debate consensus. Am J Clin Nutr 2021;113(2):274-276. https://doi org/10.1093/ajcn/nqaa345
- Cassin SE, Buchman DZ, Leung SE, et al. Ethical, stigma, and policy implications of food addiction: A scoping review, Nutrients 2019;11(4):710, https://doi.org/10.3390/nu11040710
- 96. Muhlhans B, Horbach T, de Zwaan M. Psychiatric disorders in bariatric surgery candidates: A review of the literature and results of a German prebariatric surgery sample. Gen Hosp Psychiatry 2009;31(5):414-421. https://doi.org/10.1016/j.genhosppsych.2009.05.004
- 97. Taylor VH, Hensel J. Multimorbidity: A review of the complexity of mental health issues in bariatric candidates informed by Canadian data. Can J Diabetes 2017;41(4):448-452. https://doi. org/10.1016/j.jcjd.2017.04.004
- 98. Dawes AJ, Maggard-Gibbons M, Maher AR, et al. Mental health conditions among patients seeking and undergoing bariatric surgery: A meta-analysis. JAMA 2016;315(2):150-163. https://doi. org/10.1001/jama.2015.18118
- 99. Van der Merwe M-T, Fetter G, Naidoo S, et al. Baseline patient profiling and three-year outcome data after metabolic surgery at a South African centre of excellence. J Endocr Metab Diabetes S Afr 2015;20(3):16-27. https://doi.org/10.1080/16089677.2015.1085700
- 100. Kruger-Steyn WM, Lubbe J, Louw K-A, Asmal L. Depressive symptoms and quality of life prior to metabolic surgery in Cape Town, South Africa. S Afr J Psychiatry 2022;28:1783. https://doi.org/10.4102/sajpsychiatry.v28i0.1783
- 101. Herman AA, Stein DI, Seedat S, Heeringa SG, Moomal H, Williams DR, The South African Stress and Health (SASH) study: 12-month and lifetime prevalence of common mental disorders. S Afr Med J 2009;99(5 Pt 2):339-344.
- 102. Kalarchian MA, King WC, Devlin MJ, et al. Psychiatric disorders and weight change in a prospective study of bariatric surgery patients: A 3-year follow-up. Psychosom Med 2016;78(3):373-381. https://doi.org/10.1097/PSY.000000000000277
- 103. Thiara G, Cigliobianco M, Muravsky A, et al. Evidence for neurocognitive improvement after bariatric surgery: A systematic review. Psychosomatics 2017;58(3):217-227. https://doi.org/10.1016/j. psym.2017.02.004

- 104. Nasirzadeh Y, Kantarovich K, Wnuk S, et al. Binge eating, loss of control over eating, emotional eating, and night eating after bariatric surgery: Results from the Toronto Bari-PSYCH cohort study. Obes Surg 2018;28(7):2032-2039. https://doi.org/10.1007/s11695-018-3137-8
- Bhatti JA, Nathens AB, Thiruchelvam D, Grantcharov T, Goldstein BI, Redelmeier DA. Self-harm emergencies after bariatric surgery: A population-based cohort study. JAMA Surg 2016;151(3):226-232. https://doi.org/10.1001/jamasurg.2015.3414
- 106. Peterhansel C, Petroff D, Klinitzke G, Kersting A, Wagner B. Risk of completed suicide after bariatric surgery: A systematic review. Obes Rev 2013;14(5):369-382. https://doi.org/10.1111/obr.12014
- 107. Lim RBC, Zhang MWB, Ho RCM. Prevalence of all-cause mortality and suicide among bariatric surgery cohorts: A meta-analysis. Int J Environ Res Public Health 2018;15(7):1519. https://doi.org/10.3390/ ijerph15071519
- 108. Li L, Wu LT. Substance use after bariatric surgery: A review. J Psychiatr Res 2016;76:16-29. https://doi. org/10.1016/j.jpsychires.2016.01.009
- King WC, Chen JY, Mitchell JE, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA 2012;307(23):2516-2525. https://doi.org/10.1001/jama.2012.6147
- 110. Mitchell JE, Steffen K, Engel S, et al. Addictive disorders after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2015;11(4):897-905. https://doi.org/10.1016/j.soard.2014.10.026
 111. King WC, Chen JY, Courcoulas AP, et al. Alcohol and other substance use after bariatric surgery:
- Prospective evidence from a U.S. multicenter cohort study. Surg Obes Relat Dis 2017;13(8):1392-1402. https://doi.org/10.1016/j.soard.2017.03.021
- 112. Woodard GA, Downey J, Hernandez-Boussard T, Morton JM. Impaired alcohol metabolism after gastric bypass surgery: A case-crossover trial. J Am Coll Surg 2011;212(2):209-214. https://doi.org/10.1016/j. amcollsurg.2010.09.020
- Raebel MA, Newcomer SR, Bayliss EA, et al. Chronic opioid use emerging after bariatric surgery.
- Pharmacoepidemiol Drug Saf 2014;23(12):1247-1257. https://doi.org/10.1002/pds.3625 114. Raebel MA, Newcomer SR, Reifler LM, et al. Chronic use of opioid medications before and after bariatric surgery. JAMA 2013;310(13):1369-1376. https://doi.org/10.1001/jama.2013.278344
 Wimmelmann CL, Dela F, Mortensen EL. Psychological predictors of weight loss after bariatric surgery:
- A review of recent research. Obes Res Clin Pract 2014;8(4):e299-e313. https://doi.org/10.1016/j. orcp.2013.09.003
- Sheets CS, Peat CM, Berg KC, et al. Post-operative psychosocial predictors of outcome in bariatric surgery. Obes Surg 2015;25(2):330-345. https://doi.org/10.1007/s11695-014-1490-9
- 117. De Zwaan M, Enderle J, Wagner S, et al. Anxiety and depression in bariatric surgery patients: A prospective, follow-up study using structured clinical interviews. J Affect Disord 2011;133(1-2):61-68. https://doi.org/10.1016/j.jad.2011.03.025
- 118. Sockalingam S, Cassin SE, Wnuk S, et al. A pilot study on telephone cognitive behavioral therapy for patients six months post-bariatric surgery. Obes Surg 2017;27(3):670-675. https://doi.org/10.1007/s11695-016-2322-x
- Thomson L, Sheehan KA, Meaney C, Wnuk S, Hawa R, Sockalingam S. Prospective study of psychiatric illness as a predictor of weight loss and health related quality of life one year after bariatric surgery. J Psychosom Res 2016;86:7-12. https://doi.org/10.1016/j.jpsychores.2016.04.008
- 120. Devlin MJ, King WC, Kalarchian MA, et al. Eating pathology and experience and weight loss in a prospective study of bariatric surgery patients: 3-year follow-up. Int J Eat Disord 2016;49(12):1058-1067. https://doi.org/10.1002/eat.22578
- Sogg S, Lauretti J, West-Smith L. Recommendations for the presurgical psychosocial evaluation of bariatric
- surgery patients. Surg Obes Relat Dis 2016;12(4):731-749. https://doi.org/10.1016/j.soard.2016.02.008 Sogg S, Mori DL. Psychosocial evaluation for bariatric surgery: The Boston Interview and opportunities are surgery. for intervention. Obes Surg 2009;19(3):369-377. https://doi.org/10.1007/s11695-008-9676-7
- Thiara G, Yanofksy R, Abdul-Kader S, et al. Toronto Bariatric Interprofessional Psychosocial Assessment Suitability Scale: Evaluating a new clinical assessment tool for bariatric surgery candidates. Psychosomatics 2016;57(2):165-173. https://doi.org/10.1016/j.psym.2015.12.003
- 124. Barclay KS, Rushton PW, Forwell SJ. Measurement properties of eating behavior self-assessment tools in adult bariatric surgery populations: A systematic review. Obes Surg 2015;25(4):720-737. https://doi. org/10.1007/s11695-015-1593-v
- Marek RJ, Heinberg LJ, Lavery M, Rish JM, Ashton K. A review of psychological assessment instru for use in bariatric surgery evaluations. Psychol Assess 2016;28(9):1142-1157. https://doi.org/10.1037/
- Cassin S, Sockalingam S, Hawa R, et al. Psychometric properties of the Patient Health Questionnaire (PHQ-9) as a depression screening tool for bariatric surgery candidates. Psychosomatics 2013;54(4):352-358, https://doi.org/10.1016/j.psvm.2012.08.010
- Parker K, O'Brien P, Brennan L. Measurement of disordered eating following bariatric surgery: A systematic review of the literature. Obes Surg 2014;24(6):945-953. https://doi.org/10.1007/s11695-014-1248-4
- 128. Mitchell JE, King WC, Chen JY, et al. Course of depressive symptoms and treatment in the Longitudinal Assessment of Bariatric Surgery (LABS-2) study. Obesity (Silver Spring) 2014;22(8):1799-1806. https://doi.
- 129. Padwal R, Brocks D, Sharma AM. A systematic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev 2010;11(1):41-50. https://doi.org/10.1111/j.1467-789X.2009.00614.x
- 130. Roerig JL, Steffen K. Psychopharmacology and bariatric surgery. Eur Eat Disord Rev 2015;23(6):463-469. https://doi.org/10.1002/erv.2396
- 131. Hamad GG, Helsel JC, Perel JM, et al. The effect of gastric bypass on the pharmacokinetics of serotonin reuptake inhibitors. Am J Psychiatry 2012;169(3):256-263. https://doi.org/10.1176/appi.ajp.2011.11050719
- 132. Bingham K, Hawa R, Sockalingam S. SSRI discontinuation syndrome following bariatric surgery: A case report and focused literature review. Psychosomatics 2014;55(6):692-697. https://doi.org/10.1016/j. svm.2014.07.003
- Bingham KS, Thoma J, Hawa R, Sockalingam S. Perioperative lithium use in bariatric surgery: A case series and literature review. Psychosomatics 2016;57(6):638-644. https://doi.org/10.1016/j.psym.2016.07.001
- Bingham KS, Yanofsky R. Psychopharmacology in bariatric surgery patients. In: Sockalingam SHR, ed.
- Psychiatric Care in Severe Obesity. Cham, Switzerland: Springer, 2017:313-333.

 ASOI Adult Obesity Clinical Practice Guideline adaptation (ASOI version 1, 2022) by: O'Dwyer S, Allen S, Fitzgerald I, Moore S, Yoder R. Chapter adapted from: Taylor VH, Sockalingam S, Hawa R, Hahn M. https://asoi.info/guidelines/mentalhealth/ (accessed 21 October 2024).
- Ogden J, Hollywood A, Pring C. The impact of psychological support on weight loss post weight loss surgery: A randomised control trial. Obes Surg 2015;25(3):500-505. https://doi.org/10.1007/s11695-014-
- 137. Stewart F, Avenell A. Behavioural interventions for severe obesity before and/or after bariatric surgery: A systematic review and meta-analysis. Obes Surg 2016;26(6):1203-1214. https://doi.org/10.1007/s11695-
- 138. Rudolph A, Hilbert A. Post-operative behavioural management in bariatric surgery: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2013;14(4):292-302. https://doi. org/10.1111/obr.12013Kalarchian MA, Marcus MD. Psychosocial interventions pre and post bariatric surgery. Eur Eat Disord Rev 2015;23(6):457-462. https://doi.org/10.1002/erv.2392
- 139. Paul L, van der Heiden C, Hoek HW. Cognitive behavioral therapy and predictors of weight loss in bariatric surgery patients. Curr Opin Psychiatry 2017;30(6):474-479. https://doi.org/10.1097/ YCO 0000000000000359
- 140. Bradley LE, Forman EM, Kerrigan SG, Butryn M, Herbert JD, Sarwer DB. A pilot study of an acceptance-based behavioral intervention for weight regain after bariatric surgery. Obes Surg 2016;26(10):2433-2441. https://doi.org/10.1007/s11695-016-2125-0

- 141. Wnuk SM, Du CT, van Exan J, et al. Mindfulness-based eating and awareness training for postbariatric surgery patients: A feasibility pilot study. Mindfulness 2018;9(3):949-960. https://doi.org/10.1007/s12671-017-0834-7
- Vidal P, Ramón JM, Goday A, et al. Lack of adherence to follow-up visits after bariatric surgery: Reasons and outcome. Obes Surg 2014;24(2):179-183. https://doi.org/10.1007/s11695-013-1094-9
 Kim HJ, Madan A, Fenton-Lee D. Does patient compliance with follow-up influence weight loss after
- gastric bypass surgery? A systematic review and meta-analysis. Obes Surg 2014;24(4):647-651. https://doi.org/10.1007/s11695-014-1178-1

 144. Goode RW, Ye L, Sereika SM, et al. Socio-demographic, anthropometric, and psychosocial predictors of attrition across behavioral weight-loss trials. Eat Behav 2016;20:27-33. https://doi.org/10.1016/j. eatbeh.2015.11.009
- 145. Moroshko I, Brenan L, O'Brien P. Predictors of dropout in weight loss interventions: A systematic review of the literature. Obes Rev 2011;12(11):912-934. https://doi.org/10.1111/j.1467-789X.2011.00915.x
- 146. Larjani S, Spivak I, Hao Guo M, et al. Preoperative predictors of adherence to multidisciplinary follow-up care postbariatric surgery. Surg Obes Relat Dis 2016;12(2):350-356. https://doi.org/10.1016/j. soard.2015.11.007
- Sockalingam S, Cassin S, Hawa R, et al. Predictors of post-bariatric surgery appointment attendar The role of relationship style. Obes Surg 2013;23(12):2026-2032. https://doi.org/10.1007/s11695-013-
- 148. Hood MM, Corsica J, Bradley L, Wilson R, Chirinos DA, Vivo A. Managing severe obesity: Understanding and improving treatment adherence in bariatric surgery. J Behav Med 2016;39(6):1092-1103. https://doi.org/10.1007/s10865-016-9772-4
- Aarts MA, Sivapalan N, Nikzad SE, Seroodio K, Sockalingam S, Conn LG. Optimizing bariatric surgery multidisciplinary follow-up: A focus on patient-centered care. Obes Surg 2017;27(3):730-736. https://doi.org/10.1007/s11695-016-2354-2
 150. Sunil S, Santiago VA, Gougeon L, et al. Predictors of vitamin adherence after bariatric surgery. Obes
- Surg 2017;27(2):416-423. https://doi.org/10.1007/s11695-016-2306-x