A critical analysis of Discovery Health’s claims-based risk adjustment of mortality rates in South African private sector hospitals

R N Rodseth,1,2 MB ChB, PhD; D Smith,1 MB ChB, MBA; C Maslo,4 MD, PhD; A Laubscher,1,3 MB ChB, MBA; L Thabane,3 MSc (Statistics), PhD

1 Netcare Ltd, Johannesburg, South Africa
2 Department of Anaesthesiology and Critical Care, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
3 Gordon Institute of Business Science, University of Pretoria, Sandton, South Africa
4 Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada

Corresponding author: R N Rodseth (reitze.rodseth@netcare.co.za)

In 2019, Discovery Health published a risk adjustment model to determine standardised mortality rates across South African private hospital systems, with the aim of contributing towards quality improvement in the private healthcare sector. However, the model suffers from limitations due to its design and its reliance on administrative data. The publication’s aim of facilitating transparency is unfortunately undermined by shortcomings in reporting. When designing a risk prediction model, patient-proximate variables with a sound theoretical or proven association with the outcome of interest should be used. The addition of key condition-specific clinical data points at the time of hospital admission will dramatically improve model performance. Performance could be further improved by using summary risk prediction scores such as the EUROSCORE II for coronary artery bypass graft surgery or the GRACE risk score for acute coronary syndrome. In general, model reporting should conform to published reporting standards, and attempts should be made to test model validity by using sensitivity analyses. In particular, the limitations of machine learning prediction models should be understood, and these models should be appropriately developed, evaluated and reported.

In this article, we conduct a critical analysis of the methodology and reporting used in the Discovery Health publication. The critique seeks to contribute towards improving the methodology, reporting and transparency of such risk adjustment models, and to widen discussion on the strengths and limitations of risk adjustment models based on service claims data. As more SA private sector medical funders explore their use, it is important that the quality of the models be improved.

Background
Risk stratification and prediction is an integral part of clinical medicine and is used for a variety of reasons. First, risk stratification and benchmarking can be used to evaluate the health outcomes of individual patients, clinicians, hospitals, systems or even countries, and becomes a powerful tool with which to improve healthcare quality. Second, for the clinician, it is useful in directing further patient investigation and treatment, as well as providing a framework against which clinical outcomes can be measured. Was the death of this patient expected? Is my rate of heart failure readmissions comparable to that of my peers? And finally, it allows patients to make informed decisions about possible treatment options. For example, is the 0.5% chance of dying during the placement of my endovascular stent outweighed by the 5% chance of having my aortic aneurysm rupture during the next year? It is, however, important to note that population-derived scores should generally not be used to assign individual risk. Rather, these scores are used to risk stratify patients into risk categories.

The more accurately the current state of a patient can be described, the more accurate prediction becomes. A prediction model that uses a ‘history of coronary heart disease’ as a risk factor to predict death from an acute myocardial infarction (AMI) is always going to be inferior to a model that uses ‘current admission to hospital for AMI’ as a risk factor. However, risk factors that capture the degree of end-organ damage sustained from the current AMI, such as N-terminal B-type natriuretic peptide or troponin elevations, or the use of inotropes during admission, are much more powerful and accurate predictors than admission to hospital alone. Similarly, in a patient with cardiac failure, an echocardiogram done at the time of hospital admission is of much greater predictive value than one done a month prior to the admission. Closer patient proximity, in terms of time and assessment of clinical condition, will generally dramatically improve model performance.
Variables from. In this model, there are three sets of candidate risk variables that reflect proximate patient risk (i.e. clinical emergency, DRG and DRG stage), and four sets provide candidate risk variables to capture a patient’s chronic risk. The article does not report on the rationale for choosing these four data sets. Furthermore, it does not explore possible redundancy between these variables, as the presence and severity of chronic disease conditions should be directly correlated to the number of times a patient would seek help for those conditions. Similarly, predicted resource utilisation would be determined by the same chronic conditions and the severity of the conditions. This raises the possibility that the poor generalised linear model (GLM) performance may be a result of variable collinearity.

A second concern is that there does not seem to be any clear hierarchy or clinical risk weighting used for the chronic predictors. Both the DRG classification system and the resource utilisation bands are designed to predict cost, as opposed to mortality risk. This approach contrasts with other risk assignment tools that are fundamentally orientated and weighted towards predicting clinical risk (i.e. the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, and the Hierarchical Condition Categories (HCC) developed by the Centers for Medicare and Medicaid Services (CMS)). Interestingly, the predictive advantage of using a clinically orientated risk score has been shown in an analysis where the incorporation of DRGs into the CMS HCC risk adjustment model found that DRGs contributed ‘less than a percentage point’ improvement.[14]

A third concern is the model’s assumptions around the effect of the individual hospital systems. After adjusting for patient risk, individual hospitals are added to the model, under the assumption that ‘[the hospital system effect [determined by the model] represents the underlying risk of mortality at the hospital, after accounting for patient clinical risk’.[1] The results of this second analytical step are then used to classify hospitals as performing above, at, or below expected levels. As has been shown, the addition of patient-proximate clinical data significantly improves the performance of models based only on administrative data.[6-9] The assumption that patient clinical risk has been accounted for by the model is therefore incorrect. The incompleteness of the clinical risk adjustment is further highlighted by the model’s heavy weighting toward chronic risk predictors that are not clinically weighted.

There are structural differences between hospitals that drive differences in patient case-mixtures. Certain hospitals offer specialised services (e.g. cardia catheterisation, extracorporeal membrane oxygenation, trauma services, and neuro-interventions for stroke patients), making them more likely to see patients with conditions of higher acuity and complexity. These hospitals will also often serve as referral centres for patients requiring higher levels of care, and will then receive patients who have been transported by ambulance or aeromedical services. Likewise, more rural hospitals may have patients with poorer baseline health and different patterns of disease presentation.[11,12] To adjust for these factors, some models include hospital complexity as a variable, or report adjusted hospital mortality within peer-ranked categories based on size or services offered.[13] Both resource availability and geographical location are important factors to consider when attempting to compare mortality rates between SA hospitals.

**The Discovery Health model methodology**

Table 1 lists the factors used in risk adjustment in the model published by Discovery Health in 2019.[1]

As expected, patient sex and age are included in the model. The most patient-proximate risk factor is the presence of a clinical emergency, as identified by provider billing codes. The next most proximate risk factor is the admission’s base diagnosis-related group (DRG) and clinical severity, or staging. A DRG categorises patients with similar clinical diagnoses and is used to control hospital costs and determine reimbursement. Within each of these DRGs, patients are then staged according to their disease severity. To generate a picture of the patient’s clinical risk history, the model uses all the patient’s validated chronic conditions, along with their specific disease staging. In addition, it uses the number of prior related events and the patient’s resource utilisation band for the 12 months before the admission. Using these factors, the adjusted risk for each individual patient is estimated, using a gradient-boosting machine (GBM) family of models.

The above is a common approach to building clinical risk adjustment models when only having administrative data to draw from. In this model, there are three sets of candidate risk variables that consider proximate patient risk (i.e. clinical emergency, DRG and DRG stage), and four sets provide candidate risk variables to capture a patient’s chronic risk. The article does not report on the rationale for choosing these four data sets. Furthermore, it does not explore possible redundancy between these variables, as the presence and severity of chronic disease conditions should be directly correlated to the number of times a patient would seek help for those conditions. Similarly, predicted resource utilisation would be determined by the same chronic conditions and the severity of the conditions. This raises the possibility that the poor generalised linear model (GLM) performance may be a result of variable collinearity.

A second concern is that there does not seem to be any clear hierarchy or clinical risk weighting used for the chronic predictors. Both the DRG classification system and the resource utilisation bands are designed to predict cost, as opposed to mortality risk. This approach contrasts with other risk assignment tools that are fundamentally orientated and weighted towards predicting clinical risk (i.e. the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, and the Hierarchical Condition Categories (HCC) developed by the Centers for Medicare and Medicaid Services (CMS)). Interestingly, the predictive advantage of using a clinically orientated risk score has been shown in an analysis where the incorporation of DRGs into the CMS HCC risk adjustment model found that DRGs contributed ‘less than a percentage point’ improvement.[14]

A third concern is the model’s assumptions around the effect of the individual hospital systems. After adjusting for patient risk, individual hospitals are added to the model, under the assumption that ‘...the hospital system effect [determined by the model] represents the underlying risk of mortality at the hospital, after accounting for patient clinical risk’.[1] The results of this second analytical step are then used to classify hospitals as performing above, at, or below expected levels. As has been shown, the addition of patient-proximate clinical data significantly improves the performance of models based only on administrative data.[6-9] The assumption that patient clinical risk has been accounted for by the model is therefore incorrect. The incompleteness of the clinical risk adjustment is further highlighted by the model’s heavy weighting toward chronic risk predictors that are not clinically weighted.

There are structural differences between hospitals that drive differences in patient case-mixtures. Certain hospitals offer specialisation services (e.g. cardia catheterisation, extracorporeal membrane oxygenation, trauma services, and neuro-interventions for stroke patients), making them more likely to see patients with conditions of higher acuity and complexity. These hospitals will also often serve as referral centres for patients requiring higher levels of care, and will then receive patients who have been transported by ambulance or aeromedical services. Likewise, more rural hospitals may have patients with poorer baseline health and different patterns of disease presentation.[11,12] To adjust for these factors, some models include hospital complexity as a variable, or report adjusted hospital mortality within peer-ranked categories based on size or services offered.[13] Both resource availability and geographical location are important factors to consider when attempting to compare mortality rates between SA hospitals.

**Table 1. The factors used in risk adjustment in the model published by Discovery Health in 2019[1]**

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Demographics</strong></td>
<td>• Age</td>
</tr>
<tr>
<td><strong>Acute risk predictors</strong></td>
<td>• Clinical emergency&lt;br&gt;• DRG&lt;br&gt;• DRG stage</td>
</tr>
<tr>
<td><strong>Chronic risk predictors</strong></td>
<td>• Chronic disease conditions&lt;br&gt;• Chronic disease staging&lt;br&gt;• Count of prior related events per month (12 months prior to admission)&lt;br&gt;• Resource utilisation band (12 months prior to admission)</td>
</tr>
</tbody>
</table>

**Shortcomings in reporting**

Discovery Health’s aim of facilitating transparency is unfortunately undermined by its reporting shortcomings. The article does not provide the rationale behind the choice of variables to include into the risk models. It does not report the number of DRGs used in the model, or the range of severity represented by the Truven disease...
staging groupers. The article does not identify the software used to conduct these analyses, or report the type of GBM model used, the data assumptions used in modelling the data, the choice of model hyperparameters, or the approach to hyperparameter tuning.

The article fails to report any performance metrics for any of the models. There are a range of options with which to report prediction model performance: F1 statistics for precision-recall graphs, C statistics, positive predictive value, negative predictive value, accuracy, area under the receiver operating characteristic curve, or variable importance plots. The need for such reporting is highlighted by the pneumonia precision-recall graph, which visually seems to perform worse than the other models. Without the performance metrics, these models cannot be compared meaningfully. Results should be reported with 95% confidence intervals so that the reader is able to understand their precision. Furthermore, no formal test results are presented of the comparison between the derivation and validation models. The article does not report any statistics to quantify the performance of the GBM model against the GLM. No calibrations between actual and predicted model performances are reported.

Towards building better risk prediction models
Principles of variable selection
Risk adjustment models should be parsimonious and avoid redundancy. They should aim to include candidate risk factors that have a proven association with the outcome or with a strong basis in theory. When using administrative data as a source for these factors, the first step is to include patient age and sex.

After this, factors such as the number of chronic conditions that the patient has been diagnosed with, as well as the severity of these conditions, are added to the model. In administrative models, ICD-10 codes are used to identify comorbidities and the primary and secondary admission diagnoses. As there are more than 68 000 ICD-10 codes, it is impractical to use them directly in risk models. ICD-10 codes are further limited in that they do not assign a clinical risk weighting to a diagnosis. A diagnosis of metastatic cancer is associated with a much higher chance of death than a diagnosis of an ingrown toenail, but ICD-10 codes do not capture this difference in risk. To adjust for these shortcomings, risk assignment tools have been developed.14,15 These tools group key patient comorbidities into clusters and weigh diagnoses that are associated with a higher risk of death. The Charlson Comorbidity Index assigns risk points for 17 - 19 comorbidities to determine a patient's estimated 10-year chance of survival.16 Similarly, the Elixhauser Comorbidity Index uses 30 comorbidities to predict 1-year mortality. Thus, the diagnosis of any severe liver disease will contribute 3 points to the Charlson risk score, while uncomplicated diabetes mellitus will contribute 1 point. The Elixhauser Comorbidity Index, used as a simple or weighted score, has generally been shown to outperform the Charlson Comorbidity Index.16-18

Models should seek to include patient-proximate variables that have a sound theoretical or proven association with the outcome of interest. These should include the reason for, and the severity of, the acute admission. The addition of key condition-specific clinical data points at the time of hospital admission would add significant value to any administrative risk model. Ideally, these would be summary risk prediction scores such as the EUROSCORE II for CABG surgery or the GRACE risk score for acute coronary syndrome (ACS). Alternatively, standardised baseline clinical data (e.g. heart rate, systolic blood pressure, electrocardiograph characteristics)3,19 or general scores such as the sequential organ failure assessment score could be used. Engaging with physician societies to identify key variables or risk scores to be included in minimal clinical data sets would be valuable and would greatly contribute towards meaningful and transparent outcome reporting.

Structural differences (resource availability, geographical location) between SA hospitals are an important driver of patient mortality, and should be reflected either in model development or in reporting of results.

Reporting risk prediction models
Reporting of clinical risk models should conform to published reporting standards.14,15,16 For machine-based learning models, the following have been proposed: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), Minimum Information for Medical AI Reporting (MINIMAR), and Recommendations for Reporting Machine Learning Analyses in Clinical Research.17-21 The limitations of clinical risk adjustment models developed using administrative data should be clearly understood, as should the limitations of using machine learning prediction models in clinical medicine.21 Hung et al.,24 in their article 'Explainable machine learning-based risk prediction model for in-hospital mortality after continuous renal replacement initiation', provide an excellent example of how to present the development and reporting of machine learning-based predictive models.

Testing risk prediction models
A sensitivity analysis is an attractive way of testing the validity of predictive models. A sensitivity analysis tests the robustness of a model by conducting analyses under a plausible but different set of assumptions about the primary modelling process. In a GBM modelling process, as used in the Discovery Health model, rerunning an analysis excluding one of the chronic risk variable sets will therefore inform the predictive value of that variable, while also testing model robustness. Similarly, the impact of adding a variable representing hospital complexity or geographical distribution could be tested in the model.

Conclusion
The publication of the Discovery Health model to determine standardised mortality rates across SA private hospital systems aimed to contribute towards quality improvement. However, the model suffers from limitations due to its design and its reliance on administrative data. Its aim to facilitate transparency is unfortunately undermined by reporting shortcomings. When designing a risk prediction model, patient-proximate variables with a sound theoretical or proven association with the outcome of interest should be used. The addition of key condition-specific clinical data points at the time of hospital admission will dramatically improve model performance, and this could be further improved by using summary risk prediction scores such as the EUROSCORE II for CABG surgery or the GRACE risk score for ACS. In general, model reporting should conform to published reporting standards and attempts should be made to test model validity by using sensitivity analyses. In particular, the limitations of machine learning prediction models should be understood, and these models should be appropriately developed, evaluated and reported.22

Declaration. None.

Acknowledgements. None.
Author contributions. RNR, DS and AL conceptualised the analysis, and RNR, DS and AL drafted the first version of the manuscript with input from CM, and LT. Further analytical input was then provided by CM and LT. The final version was reviewed and approved by all authors.

Funding. None.

Conflicts of interest. Netcare Ltd owns hospitals rated by the Discovery Health risk adjustment model being critiqued in this article.


Accepted 29 August 2022.