Medical nutrition therapy in obesity management
DOI:
https://doi.org/10.7196/SAMJ.2025.v115i9b.3706Keywords:
Diet, Medical Nutrition Therapy, Obesity, Guideline, South AfricaAbstract
RECOMMENDATIONS
- We suggest that nutrition recommendations for adults of all body sizes should be personalised to meet individual values, preferences and treatment goals to support a dietary approach that is safe, effective, nutritionally adequate, culturally acceptable and affordable for long-term adherence (Level 4, Grade D).
- PLWO should receive individualised MNT provided by a registered dietitian (when available) to improve weight outcomes (body weight, BMI), waist circumference (WC) and glycaemic control, and to establish lipid and blood pressure (BP) targets (Level 1a, Grade A).
- PLWO and impaired glucose tolerance (prediabetes) or type 2 diabetes (T2DM) may receive MNT provided by a registered dietitian (when available) to reduce body weight and WC and improve glycaemic control and BP (Level 2a, Grade B).
- PLWO can consider any of the many medical nutrition therapies to improve health-related outcomes, choosing the dietary patterns and food-based approaches that support their best long-term adherence:
- CR dietary patterns emphasising variable macronutrient distribution ranges (lower, moderate or higher carbohydrate with variable proportions of protein and fat) to achieve similar body weight reduction over 6 - 12 months within a CR plan (Level 2a, Grade B).
- Mediterranean dietary pattern to improve glycaemic control, high-density lipoprotein cholesterol (HDL-C) and triglycerides (Level 2b, Grade C), reduce cardiovascular events (Level 2b, Grade C), reduce risk of T2DM (Level 2b, Grade C) and increase reversion of metabolic syndrome (Level 2b, Grade C),[11] with little effect on body weight and WC (Level 2b, Grade C)
- Vegetarian dietary pattern to improve glycaemic control and established blood lipid targets, including low-density lipoprotein cholesterol (LDL-C), and reduce body weight (Level 2a, Grade B), risk of T2DM (Level 3, Grade C), and coronary heart disease incidence and mortality (Level 3, Grade C).
- Portfolio dietary pattern to improve established blood lipid targets, including LDL-C, apolipoprotein B (apo B) and non-HDL-C (Level 1a, Grade B),[16] and reduce C-reactive protein (CRP), BP and estimated 10-year coronary heart disease risk (Level 2a, Grade B)
- Low glycaemic index dietary pattern to reduce body weight (Level 2a, Grade B), improve glycaemic control (Level 2a, Grade B) and established blood lipid targets, including LDL-C (Level 2a, Grade B), and reduce BP (Level 2a, Grade B)[20] and the risk of T2DM (Level 3, Grade C) and coronary heart disease (Level 3, Grade C).
- Dietary Approaches to Stop Hypertension (DASH) dietary pattern to reduce body weight and WC (Level 1a, Grade B), improve BP (Level 2a, Grade B), established lipid targets, including LDL-C (Level 2a, Grade B), CRP (Level 2b, Grade B)and glycaemic control (Level 2a, Grade B), and reduce the risk of T2DM, cardiovascular disease, coronary heart disease and stroke (Level 3, Grade C).
- Nordic dietary pattern to reduce body weight (Level 2a, Grade B)[26] and body weight regain (Level 2b, Grade B), improve BP (Level 2b, Grade B)[27] and established blood lipid targets, including LDL-C, apo B (Level 2a, Grade B)[28] and non-HDL-C (Level 2a, Grade B), and reduce the risk of cardiovascular and all-cause mortality (Level 3, Grade C)
- Partial meal replacements (replacing one to two meals per day as part of a CR intervention) to reduce body weight, WC and BP and improve glycaemic control (Level 1a, Grade B).
- Intermittent and continuous CR achieved similar short-term body weight reduction (Level 2a, Grade B)
- Pulses (i.e. beans, peas, chickpeas, lentils) to improve body weight (Level 2, Grade B), glycaemic control (Level 2, Grade B), established lipid targets, including LDL-C (Level 2, Grade B), and systolic BP (Level 2, Grade C), and reduce the risk of coronary heart disease (Level 3, Grade C).
- Vegetables and fruit to improve diastolic BP (Level 2, Grade B) and glycaemic control (Level 2, Grade B),[39] and reduce the risk of T2DM (Level 3, Grade C) and cardiovascular mortality (Level 3, Grade C).
- Nuts to improve glycaemic control (Level 2, Grade B) and established lipid targets, including LDL-C (Level 3, Grade C) and reduce the risk of cardiovascular disease (Level 3, Grade C).
- Whole grains (especially from oats and barley) to improve established lipid targets, including total cholesterol and LDL-C (Level 2, Grade B).
- Dairy foods to reduce body weight, WC and body fat and increase lean mass in CR diets, but not in unrestricted diets (Level 3, Grade C), and reduce the risk of T2DM and cardiovascular disease (Level 3, Grade C).
- PLWO and impaired glucose tolerance (prediabetes) should consider intensive behavioural interventions that target a 5 - 7% weight loss to improve glycaemic control, BP and blood lipid targets (Level 1a, Grade A), reduce the incidence of T2DM (Level 1a, Grade A)[48] and microvascular complications (retinopathy, nephropathy and neuropathy) (Level 1a, Grade B), and reduce cardiovascular and all-cause mortality (Level 1a, Grade B).
- PLWO and T2DM should consider intensive behavioural therapy that targets a 7 - 15% weight loss to increase the remission of T2DM (Level 1a, Grade A) and reduce the incidence of nephropathy (Level 1a, Grade A) obstructive sleep apnoea (Level 1a, Grade A) and depression (Level 1a, Grade A)
- We recommend a non-restrictive dietary approach to improve QoL, psychological outcomes (general wellbeing, body image perceptions), cardiovascular outcomes, body weight, physical activity, cognitive restraint and eating behaviours (Level 3, Grade C).
References
1. Department of Health, Republic of South Africa. Food-based dietary guidelines for South Africa. S Afr J Clin Nutr 2013;26(3 Suppl):S1-S164. Available from: http://sajcn.co.za/index.php/SAJCN/issue/view/67 (accessed 9 February 2025).
2. KoliakiC,SpinosT,SpinouΜ,BriniaM-E,MitsopoulouD,KatsilambrosN.Definingtheoptimaldietary approach for safe, effective and sustainable weight loss in overweight and obese adults. Healthcare (Basel) 2018;6(3):73. https://doi.org/10.3390/healthcare6030073
3. Williams LT, Barnes K, Ball L, Ross LJ, Sladdin I, Mitchell LJ. How effective are dietitians in weight management? A systematic review and meta-analysis of randomised controlled trials. Healthcare (Basel) 2019;7(1):20. https://doi.org/10.3390/healthcare7010020
4. Raynor HA, Davidson PG, Burns H, et al. Medical nutrition therapy and weight loss questions for the Evidence Analysis Library prevention of type 2 diabetes project: Systematic reviews. J Acad Nutr Diet 2017;117(10):1578-1611. https://doi.org/10.1016/j.jand.2017.06.361
5. Razaz JM, Rahmani J, Varkaneh HK, Thompson J, Clark C, Abdulazeem HM. The health effects of medical nutrition therapy by dietitians in patients with diabetes: A systematic review and meta-analysis: Nutrition therapy and diabetes. Prim Care Diabetes 2019;13(5):399-408. https://doi.org/10.1016/j. pcd.2019.05.001
6. Johnston BC, Kanters S, Bandayrel K, et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 2014;312(9):923-933. https://doi.org/10.1001/ jama.2014.10397
7. Pan B, Wu Y, Yang Q, et al. The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: A network meta-analysis. J Evid Based Med 2019;12(1):29-39. https://doi.org/10.1111/jebm.12312
8. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389
9. Salas-Salvadó J, Bulló M, Babio N, et al.; PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011;34(1):14-19. https://doi.org/10.2337/dc10-1288
10. Salas-Salvadó J, Bulló M, Babio N, et al.; PREDIMED Study Investigators. Erratum. Reduction in the incidence of type 2 diabetes with the mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomised trial. Diabetes Care 2011;34:14-19. Diabetes Care 2018;41(10):2259-2260. https://doi.org/10.2337/dc18-er10
11. Babio N, Toledo E, Estruch R, et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 2014;186(17):E649-E657. https://doi.org/10.1503/cmaj.140764 12. TheEditorsofTheLancetDiabetesandEndocrinology.Retractionandrepublication–Effectofahigh-fat
Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol 2019;7(5):334. https://doi. org/10.1016/S2213-8587(19)30073-7
13. Viguiliouk E, Kendall CW, Kahleova H, et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2019;38(3):1133-1145. https://doi.org/10.1016/j.clnu.2018.05.032
14. LeeY,ParkK.Adherencetoavegetariandietanddiabetesrisk:Asystematicreviewandmeta-analysisof observational studies. Nutrients 2017;9(6):603. https://doi.org/10.3390/nu9060603
15. GlennAJ,ViguilioukE,SeiderM,etal.Relationofvegetariandietarypatternswithmajorcardiovascular outcomes: A systematic review and meta-analysis of prospective cohort studies. Front Nutr 2019;6:80. https://doi.org/10.3389/fnut.2019.00080
16. ChiavaroliL,NishiSK,KhanTA,etal.Portfoliodietarypatternandcardiovasculardisease:Asystematic review and meta-analysis of controlled trials. Prog Cardiovasc Dis 2018;61(1):43-53. https://doi. org/10.1016/j.pcad.2018.05.004
17. Chiavaroli L, Kendall CWC, Braunstein CR, et al. Effect of pasta in the context of low-glycaemic index dietary patterns on body weight and markers of adiposity: A systematic review and meta-analysis of randomised controlled trials in adults. BMJ Open 2018;8(3):e019438. https://doi.org/10.1136/ bmjopen-2017-019438
18. Wang Q, Xia W, Zhao Z, Zhang H. Effects comparison between low glycemic index diets and high glycemic index diets on HbA1c and fructosamine for patients with diabetes: A systematic review and meta-analysis. Prim Care Diabetes 2015;9(5):362-369. https://doi.org/10.1016/j.pcd.2014.10.008
19. Goff LM, Cowland DE, Hooper L, Frost GS. Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 2013;23(1):1-10. https://doi.org/10.1016/j.numecd.2012.06.002
20. Evans CE, Greenwood DC, Threapleton DE, Gale CP, Cleghorn CL, Burley VJ. Glycemic index, glycemic load, and blood pressure: A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2017;105(5):1176-1190. https://doi.org/10.3945/ajcn.116.143685
21. LiveseyG,TaylorR,LiveseyHF,etal.Dietaryglycemicindexandloadandtheriskoftype2diabetes:A systematic review and updated meta-analyses of prospective cohort studies. Nutrients 2019;11(6):1280. https://doi.org/10.3390/nu11061280
22. Livesey G, Livesey H. Coronary heart disease and dietary carbohydrate, glycemic index, and glycemic load: Dose-response meta-analyses of prospective cohort studies. Mayo Clin Proc Innov Qual Outcomes 2019;3(1):52-69. https://doi.org/10.1016/j.mayocpiqo.2018.12.007
23. Soltani S, Shirani F, Chitsazi MJ, Salehi-Abargouei A. The effect of Dietary Approaches to Stop Hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta- analysis of randomized controlled clinical trials. Obes Rev 2016;17(5):442-454. https://doi.org/10.1111/ obr.12391
24. Chiavaroli L, Viguiliouk E, Nishi SK, et al. DASH dietary pattern and cardiometabolic outcomes: An umbrella review of systematic reviews and meta-analyses. Nutrients 2019;11(2):338. https://doi. org/10.3390/nu11020338
25. Soltani S, Chitsazi MJ, Salehi-Abargouei A. The effect of Dietary Approaches to Stop Hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin Nutr 2018;37(2):542-550. https://doi.org/10.1016/j.clnu.2017.02.018
26. Poulsen SK, Due A, Jordy AB, et al. Health effect of the New Nordic Diet in adults with increased waist circumference: A 6-mo randomised controlled trial. Am J Clin Nutr 2014;99(1):35-45. https://doi. org/10.3945/ajcn.113.069393
27. Poulsen SK, Crone C, Astrup A, Larsen TM. Long-term adherence to the New Nordic Diet and the effects on body weight, anthropometry and blood pressure: A 12-month follow-up study. Eur J Nutr 2015;54(1):67-76. https://doi.org/10.1007/s00394-014-0686-z
28. Adamsson V, Reumark A, Fredriksson IB, et al. Effects of a healthy Nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: A randomized controlled trial (NORDIET). J Intern Med 2011;269(2):150-159. https://doi.org/10.1111/j.1365-2796.2010.02290.x
29. Uusitupa M, Hermansen K, Savolainen MJ, et al. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome – a randomized study (SYSDIET). J Intern Med 2013;274(1):52-66. https://doi.org/10.1111/joim.12044
30. Lemming EW, Byberg L, Wolk A, Michaëlsson K. A comparison between two healthy diet scores, the modified Mediterranean diet score and the Healthy Nordic Food Index, in relation to all-cause and cause- specific mortality. Br J Nutr 2018;119(7):836-846. https://doi.org/10.1017/S0007114518000387
31. Noronha JC, Nishi SK, Braunstein CR, et al. The effect of liquid meal replacements on cardiometabolic risk factors in overweight/obese individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2019;42(5):767-776. https://doi.org/10.2337/dc18-2270
and cardiometabolic outcomes: A systematic review and meta-analysis of randomized controlled trials. J Transl Med 2018;16(1):371. https://doi.org/10.1186/s12967-018-1748-4
33. Kim SJ, de Souza RJ, Choo VL, et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016;103(5):1213-1223. https://doi.org/10.3945/ajcn.115.124677
34. Sievenpiper JL, Kendall CW, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 2009;52(8):1479-1495. https://doi.org/10.1007/s00125-009-1395-7
35. Ha V, Sievenpiper JL, de Souza RJ, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2014;186(8):E252-E262. https://doi.org/10.1503/cmaj.131727
36. Jayalath VH, de Souza RJ, Sievenpiper JL, et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am J Hypertens 2014;27(1):56-64. https://doi. org/10.1093/ajh/hpt155
37. Viguiliouk E, Blanco Mejia S, Kendall CWC, Sievenpiper JL. Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses. Ann N Y Acad Sci 2017;1392(1):43-57. https://doi.org/10.1111/nyas.13312
38. Shin JY, Kim JY, Kang HT, Han KH, Shim JY. Effect of fruits and vegetables on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr 2015;66(4):416- 425. https://doi.org/10.3109/09637486.2015.1025716
39. Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze- dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: A randomized double-blind controlled trial. Ann Nutr Metab 2013;63(3):256-264. https://doi. org/10.1159/000356053
40. SchwingshacklL,HoffmannG,LampousiAM,etal.Foodgroupsandriskoftype2diabetesmellitus:A systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017;32(5):363-375. https:// doi.org/10.1007/s10654-017-0246-y
41. Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014;349:g4490. https://doi.org/10.1136/bmj.g4490
42. Viguiliouk E, Kendall CW, Blanco Mejia S, et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014;9(7):e103376. https://doi.org/10.1371/journal.pone.0103376
43. Sabaté J, Oda K, Ros E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch Intern Med 2010;170(9):821-827. https://doi.org/10.1001/archinternmed.2010.79
44. BaoY,HanJ,HuFB,etal.Associationofnutconsumptionwithtotalandcause-specificmortality.NEngl J Med 2013;369(21):2001-2011. https://doi.org/10.1056/NEJMoa1307352
45. Hollaender PL, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 2015;102(3):556-572. https://doi.org/10.3945/ajcn.115.109165
46. Geng T, Qi L, Huang T. Effects of dairy products consumption on body weight and body composition among adults: An updated meta-analysis of 37 randomized control trials. Mol Nutr Food Res 2018;62(1). https://doi.org/10.1002/mnfr.201700410
47. Look AHEAD Research Group; Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes [erratum appears in N Engl J Med 2014; 370(19):1866]. N Engl J Med 2013;369(2):145-154. https://doi.org/10.1056/NEJMoa1212914
48. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346(6):393-403. https://doi.org/10.1056/ NEJMoa012512
49. Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol 2019;7(6):452-461. https://doi.org/10.1016/s2213-8587(19)30093-2
50. Lean MEJ, Leslie WS, Barnes AC, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2019;7(5):344-355. https://doi.org/10.1016/s2213-8587(19)30068-3
51. Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: A secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2014;2(10):801-809. https://doi. org/10.1016/s2213-8587(14)70156-1
52. Kuna ST, Reboussin DM, Borradaile KE, et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep 2013;36(5):641-649. https://doi.org/10.5665/ sleep.2618
53. Rubin RR, Wadden TA, Bahnson JL, et al. Impact of intensive lifestyle intervention on depression and health-related quality of life in type 2 diabetes: The Look AHEAD trial. Diabetes Care 2014;37(6):1544- 1553. https://doi.org/10.2337/dc13-1928
54. Ulian MD, Aburad L, da Silva Oliveira MS, et al. Effects of Health at Every Size® interventions on health-related outcomes of people with overweight and obesity: A systematic review. Obes Rev 2018;19(12):1659-1666. https://doi.org/10.1111/obr.12749
55. Puhl RM, Heuer CA. Obesity stigma: Important considerations for public health. Am J Public Health 2010;100(6):1019-1028. https://doi.org/10.2105/ajph.2009.159491
56. RamosSalasX,ForhanM,CaulfieldT,SharmaAM,RaineKD.Addressinginternalizedweightbiasand changing damaged social identities for people living with obesity. Front Psychol 2019;10:1409. https:// doi.org/10.3389/fpsyg.2019.01409
57. RalstonJ,BrinsdenH,BuseK,etal.Timeforanewobesitynarrative.Lancet2018;392(10156):1384-1386.
https://doi.org/10.1016/S0140-6736(18)32537-6
58. BrownellKD,KershR,LudwigDS,etal.Personalresponsibilityandobesity:Aconstructiveapproachtoa controversial issue. Health Aff (Millwood) 2010;29(3):379-387. https://doi.org/10.1377/hlthaff.2009.0739
59. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to
weight loss. N Engl J Med 2011;365(17):1597-1604. https://doi.org/10.1056/NEJMoa1105816
60. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008;88(4):906-912. https://doi.
org/10.1093/ajcn/88.4.906
61. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its components: Implications for body weight regulation. Am J Clin Nutr 2012;95(4):989-994. https://doi. org/10.3945/ajcn.112.036350
62. American Diabetes Association. 5. Lifestyle management: Standards of medical care in Diabetes – 2019. Diabetes Care 2019;42(Suppl 1):S46-S60. https://doi.org/10.2337/dc19-S005
63. Misselhorn A, Hendriks SL. A systematic review of sub-national food insecurity research in South Africa: Missed opportunities for policy insights. PLoS ONE 2017;12(8):e0182399. https://doi.org/10.1371/ journal.pone.0182399
64. Battersby J. The state of urban food insecurity in Cape Town. Urban Food Security Series No. 11. Kingston, ON, and Cape Town: African Food Security Urban Network, 2011. https://scholars.wlu.ca/ afsun/21/ (accessed 9 June 2025).
65. Crush J, Frayne B, Pendleton W. The crisis of food insecurity in African cities. J Hunger Environ Nutr 2012;7(2-3):271-292. https://doi.org/10.1080/19320248.2012.702448
66. ASOI Adult Obesity Clinical Practice Guideline adaptation (ASOI version 1, 2022) by: Breen C, Browne S, Donovan C. Chapter adapted from: Browne J, Clarke C, Johnson Stoklossa C, Sievenpiper J. https:// asoi.info/guidelines/nutrition/ (accessed 8 April 2025).
67. Hofman KJ, Stacey N, Swart EC, Popkin BM, Ng SW. South Africa’s Health Promotion Levy: Excise tax findings and equity potential. Obes Rev 2021;22(9):e13301. https://doi.org/10.1111/obr.13301
68. Mchiza ZJ, Steyn NP, Hill J, et al. A review of dietary surveys in the adult South African population from 2000 to 2015. Nutrients 2015;7(9):8227-8250. https://doi.org/10.3390/nu7095389
69. Odunitan-Wayas FA, Faber M, Mendham AE, et al. Food security, dietary intake, and foodways of urban low-income older South African women: An exploratory study. Int J Environ Res Public Health 2021;18(8):3973. https://doi.org/10.3390/ijerph18083973
70. Steyn NP, Bradshaw D, Norman R, et al. Dietary changes and the health transition in South Africa: Implications for health policy. In: The Double Burden of Malnutrition: Case Studies from Six Developing Countries. Rome: Food and Agriculture Organisation of the United Nations, 2006:1-46. https://www.fao. org/4/a0442e/a0442e0v.htm (accessed July 2025).
71. Koen N, Wentzel-Viljoen E, Blaauw R. Price rather than nutrition information the main influencer of consumer food purchasing behaviour in South Africa: A qualitative study. Int J Consumer Studies 2018;42(4):409-418. https://doi.org/10.1111/ijcs.12434
72. Swift JA, Tischler V. Qualitative research in nutrition and dietetics: Getting started. J Hum Nutr Diet 2010;23(6):559-566. https://doi.org/10.1111/j.1365-277X.2010.01116.x
73. National Department of Health, South Africa. Strategy for the Prevention and Management of Obesity in South Africa, 2023 - 2028. Pretoria: NDoH, 2023. https://www.health.gov.za/wp-content/ uploads/2023/05/Obesity-Strategy-2023-2028_Final_Approved.pdf (accessed 8 July 2025).
74. VlassopoulosA,GoversE,MulrooneyH,AndroutsosO,HassapidouM.Dieteticmanagementofobesity in Europe: Gaps in current practice. Eur J Clin Nutr 2021;75(7):1155-1158. https://doi.org/10.1038/ s41430-020-00820-2
75. SwanWI,VivantiA,Hakel-SmithNA,etal.Nutritioncareprocessandmodelupdate:Towardrealizing people-centered care and outcomes management. J Acad Nutr Diet 2017;117(12):2003-2014. https://doi. org/10.1016/j.jand.2017.07.015
76. BrayGA,HeiselWE,AfshinA,etal.Thescienceofobesitymanagement:AnEndocrineSocietyscientific statement. Endocr Rev 2018;39(2):79-132. https://doi.org/10.1210/er.2017-00253
77. Nackers LM, Middleton KR, Dubyak PJ, Daniels MJ, Anton SD, Perri MG. Effects of prescribing 1,000 versus 1,500 kilocalories per day in the behavioral treatment of obesity: A randomized trial. Obesity (Silver Spring) 2013;21(12):2481-2487. https://doi.org/10.1002/oby.20439
78. ArdJD,GowerB,HunterG,etal.Effectsofcalorierestrictioninobeseolderadults:TheCROSSROADS randomized controlled trial. J Gerontol A Biol Sci Med Sci 2017;73(1):73-80. https://doi.org/10.1093/ gerona/glw237
79. ParrettiHM,JebbSA,JohnsDJ,etal.Clinicaleffectivenessofvery-low-energydietsinthemanagement of weight loss: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2016;17(3):225-234. https://doi.org/10.1111/obr.12366
80. Thomas DM, Martin CK, Lettieri S, et al. Can a weight loss of one pound a week be achieved with a 3500-kcal deficit? Commentary on a commonly accepted rule. Int J Obes (Lond) 2013;37(12):1611-1613. https://doi.org/10.1038/ijo.2013.51
81. Hall KD, Chow CC. Why is the 3500 kcal per pound weight loss rule wrong? Int J Obes (Lond) 2013;37(12):1614. https://doi.org/10.1038/ijo.2013.112
82. Polidori D, Sanghvi A, Seeley RJ, Hall KD. How strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake. Obesity (Silver Spring) 2016;24(11):2289-2295. https:// doi.org/10.1002/oby.21653
83. Zibellini J, Seimon RV, Lee CMY, et al. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res 2015;30(12):2168- 2178. https://doi.org/10.1002/jbmr.2564
84. Zibellini J, Seimon RV, Lee CMY, Gibson AA, Hsu MSH, Sainsbury A. Effect of diet-induced weight loss on muscle strength in adults with overweight or obesity – a systematic review and meta-analysis of clinical trials. Obes Rev 2016;17(8):647-663. https://doi.org/10.1111/obr.12422
85. Raynor HA, Champagne CM. Position of the Academy of Nutrition and Dietetics: Interventions for the treatment of overweight and obesity in adults. J Acad Nutr Diet 2016;116(1):129-147. https://doi. org/10.1016/j.jand.2015.10.031
86. Madden AM, Mulrooney HM, Shah S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J Hum Nutr Diet 2016;29(4):458-476. https://doi. org/10.1111/jhn.12355
87. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age- associated diseases. J Gerontol A Biol Sci Med Sci 2014;69(Suppl 1):S4-S9. https://doi.org/10.1093/ gerona/glu057
88. Villareal DT, Apovian CM, Kushner RF, Klein S; American Society for Nutrition; NAASO, The Obesity Society. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am J Clin Nutr 2005;82(5):923-934. https://doi.org/10.1093/ ajcn/82.5.923
89. Barazzoni R, Bischoff S, Boirie Y, et al. Sarcopenic obesity: Time to meet the challenge. Obes Facts 2018;11(4):294-305. https://doi.org/10.1159/000490361
90. Barazzoni R, Gortan Cappellari G. Double burden of malnutrition in persons with obesity. Rev Endocr Metab Disord 2020;21(3):307-313. https://doi.org/10.1007/s11154-020-09578-1
91. Tyrovolas S, Koyanagi A, Olaya B, et al. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: A multi‐continent study. J Cachexia Sarcopenia Muscle 2016;7(3):312- 321. https://doi.org/10.1002/jcsm.12076
92. Mendham AE, Lundin-Olsson L, Goedecke JH, et al. Sarcopenic obesity in Africa: A call for diagnostic methods and appropriate interventions. Front Nutr 2021;8:661170. https://doi.org/10.3389/ fnut.2021.661170
93. Volkert D, Beck AM, Cederholm T, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2019;38(1):10-47. https://doi.org/10.1016/j.clnu.2018.05.024
94. Villareal DT, Banks M, Siener C, Sinacore DR, Klein S. Physical frailty and body composition in obese elderly men and women. Obes Res 2004;12(6):913-920. https://doi.org/10.1038/oby.2004.111
95. WatersDL,AguirreL,GurneyB,etal.Effectofaerobicorresistanceexercise,orboth,onintermuscular and visceral fat and physical and metabolic function in older adults with obesity while dieting. J Gerontol A Biol Sci Med Sci 2022;77(1):131-139. https://doi.org/10.1093/gerona/glab111
96. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr 2016;40(2):159-211. https://doi.org/10.1177/0148607115621863
97. Mozaffarian D, Agarwal M, Aggarwal M, et al. Nutritional priorities to support GLP-1 therapy for obesity: A joint advisory from the American College of Lifestyle Medicine, the American Society for Nutrition, the Obesity Medicine Association, and the Obesity Society. Obes Pillars 2025;15:100181. https://doi.org/10.1016/j.obpill.2025.100181
98. Volkert D, Beck AM, Cederholm T, et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin Nutr 2022;41(4):958-989. https://doi.org/10.1016/j.clnu.2022.01.024
99. Nutrition Information Centre of the University of Stellenbosch (NICUS). How to eat correctly: Nutrients. https://www.sun.ac.za/english/faculty/healthsciences/nicus/how-to-eat-correctly/nutrients/ dri (accessed February 2025).
100. Trumbo P, Schlicker S, Yates AA, Poos M; Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 2002;102(11):1621-1630. https://doi.org/10.1016/s0002- 8223(02)90346-9
12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA 2018;319(7):667-679. https://doi.org/10.1001/ jama.2018.0245
102. Korsmo-Haugen HK, Brurberg KG, Mann J, Aas AM. Carbohydrate quantity in the dietary management of type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2019;21(1):15-27. https://doi.org/10.1111/dom.13499
103. Clifton PM, Condo D, Keogh JB. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets – a systematic review and meta analysis. Nutr Metab Cardiovasc Dis 2014;24(3):224-235. https://doi.org/10.1016/j.numecd.2013.11.006
104. Mansoor N, Vinknes KJ, Veierod MB, Retterstol K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: A meta-analysis of randomised controlled trials. Br J Nutr 2016;115(3):466-479. https://doi.org/10.1017/S0007114515004699
105. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360(9):859-873. https://doi.org/10.1056/NEJMoa0804748
106. DansingerML,GleasonJA,GriffithJL,SelkerHP,SchaeferEJ.ComparisonoftheAtkins,Ornish,Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: A randomized trial. JAMA
2005;293(1):43-53. https://doi.org/10.1001/jama.293.1.43
107. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: A prospective
cohort study and meta-analysis. Lancet Public Health 2018;3(9):e419-e428. https://doi.org/10.1016/
S2468-2667(18)30135-X
108. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017;390(10107):2050-2062. https://doi.org/10.1016/s0140-6736(17)32252-3
109. Jenkins DJA, Wong JMW, Kendall CWC, et al. The effect of a plant-based low-carbohydrate (‘Eco- Atkins’) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch Intern Med 2009;169(11):1046-1054. https://doi.org/10.1001/archinternmed.2009.115
110. JenkinsDJA,WongJMW,KendallCWC,etal.Effectofa6-monthveganlow-carbohydrate(‘Eco-Atkins’) diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: A randomised controlled trial. BMJ Open 2014;4(2):e003505. https://doi.org/10.1136/bmjopen-2013-003505
111. Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016;39(8):1448- 1457. https://doi.org/10.2337/dc16-0513
112. Viguiliouk E, Stewart SE, Jayalath VH, et al. Effect of replacing animal protein with plant protein on glycemic control in Diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2015;7(12):9804-9824. https://doi.org/10.3390/nu7125509
113. Li SS, Blanco Mejia S, Lytvyn L, et al. Effect of plant protein on blood lipids: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2017;6(12):e006659. https://doi. org/10.1161/JAHA.117.006659
114. Wirunsawanya K, Upala S, Jaruvongvanich V, Sanguankeo A. Whey protein supplementation improves body composition and cardiovascular risk factors in overweight and obese patients: A systematic review and meta-analysis. J Am Coll Nutr 2018;37(1):60-70. https://doi.org/10.1080/07315724.2017.1344591
115. Hooper L, Martin N, Abdelhamid A, et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020, Issue 8. Art. No.: CD011737. https://doi.org/10.1002/14651858. CD011737
116. Ramsden CE, Zamora D, Leelarthaepin B, et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013;346:e8707. https://doi.org/10.1136/bmj.e8707
117. Li Y, Hruby A, Bernstein AM, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: A prospective cohort study. J Am Coll Cardiol 2015;66(14):1538-1548. https://doi.org/10.1016/j.jacc.2015.07.055
118. Jakobsen MU, Dethlefsen C, Joensen AM, et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: Importance of the glycemic index. Am J Clin Nutr 2010;91(6):1764-1768. https://doi.org/10.3945/ajcn.2009.29099
119. Miller V, Mente A, Dehghan M, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017;390(10107):2037-2049. https:// doi.org/10.1016/S0140-6736(17)32253-5
120. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019;393(10170):434-445. https://doi. org/10.1016/S0140-6736(18)31809-9
121. ThreapletonDE,GreenwoodDC,EvansCEL,etal.Dietaryfibreintakeandriskofcardiovasculardisease: Systematic review and meta-analysis. BMJ 2013;347:f6879. https://doi.org/10.1136/bmj.f6879
122. Government of Canada. Summary of Health Canada’s assessment of a health claim about food products containing psyllium and blood cholesterol lowering. December 2011. https://www.canada.ca/en/health- canada/services/food-nutrition/food-labelling/health-claims/assessments/psyllium-products-blood- cholesterol-lowering-nutrition-health-claims-food-labelling.html (accessed 9 June 2025).
123. GovernmentofCanada.SummaryofHealthCanada’sassessmentofahealthclaimaboutbarleyproducts and blood cholesterol lowering. July 2012. https://www.canada.ca/en/health-canada/services/food- nutrition/food-labelling/health-claims/assessments/assessment-health-claim-about-barley-products- blood-cholesterol-lowering.html (accessed 9 June 2025).
124. Government of Canada. Oat products and blood cholesterol lowering: Summary of assessment of a health claim about oat products and blood cholesterol lowering. https://www.canada.ca/en/health- canada/services/food-nutrition/food-labelling/health-claims/assessments/products-blood-cholesterol- lowering-summary-assessment-health-claim-about-products-blood-cholesterol-lowering.html (accessed 3 June 2025).
125. GovernmentofCanada.SummaryofHealthCanada’sassessmentofahealthclaimaboutapolysaccharide complex (glucomannan, xanthan gum, sodium alginate) and a reduction of the post-prandial blood glucose response. May 2016. https://www.canada.ca/en/health-canada/services/food-nutrition/ food-labelling/health-claims/assessments/summary-assessment-health-claim-about-polysaccharide- complex-glucomannan-xanthan-sodium-alginate-reduction-post-prandial-blood-glucose.html (accessed 3 June 2025).
126. Jovanovski E, Khayyat R, Zurbau A, et al. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2019;42(5):755-766. https://doi.org/10.2337/dc18-1126
127. Jovanovski E, Yashpal S, Komishon A, et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: A systematic review and meta- analysis of randomized controlled trials. Am J Clin Nutr 2018;108(5):922-932. https://doi.org/10.1093/ ajcn/nqy115
128. Khan K, Jovanovski E, Ho HVT, et al. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2018;28(1):3-13. https://doi.org/10.1016/j.numecd.2017.09.007
129. Ho HVT, Jovanovski E, Zurbau A, et al. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr 2017;105(5):1239-1247. https://doi. org/10.3945/ajcn.116.142158
130. Ho HVT, Sievenpiper JL, Zurbau A, et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL- cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomised- controlled trials. Br J Nutr 2016;116(8):1369-1382. https://doi.org/10.1017/s000711451600341x
131. Chew KY, Brownlee IA. The impact of supplementation with dietary fibers on weight loss: A systematic review of randomised controlled trials. Bioact Carbohydrates Diet Fibre 2018;14:9-19. https://doi. org/10.1016/j.bcdf.2017.07.010
132. Vuksan V, Jenkins AL, Jenkins DJA, Rogovik AL, Sievenpiper JL, Jovanovski E. Using cereal to increase dietary fiber intake to the recommended level and the effect of fiber on bowel function in healthy persons consuming North American diets. Am J Clin Nutr 2008;88(5):1256-1262. https://doi. org/10.3945/ajcn.2008.25956
133. Vuksan V, Sievenpiper JL, Owen R, et al. Beneficial effects of viscous dietary fiber from konjac-mannan in subjects with the insulin resistance syndrome: Results of a controlled metabolic trial. Diabetes Care 2000;23(1):9-14. https://doi.org/10.2337/diacare.23.1.9
134. Vuksan V, Jenkins DJ, Spadafora P, et al. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes: A randomized controlled metabolic trial. Diabetes Care 1999;22(6):913-919. https://doi.org/10.2337/diacare.22.6.913
135. Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch Intern Med 2012;172(21):1653-1660. https://doi.org/10.1001/2013.jamainternmed.70
136. Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care 2002;25(9):1522-1528. https://doi. org/10.2337/diacare.25.9.1522
137. Anderson JW, Randles KM, Kendall CWC, Jenkins DJA. Carbohydrate and fiber recommendations for individuals with diabetes: A quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr 2004;23(1):5-17. https://doi.org/10.1080/07315724.2004.10719338
138. Sievenpiper JL, Khan TA, Ha V, Viguiliouk E, Auyeung R. The importance of study design in the assessment of nonnutritive sweeteners and cardiometabolic health. CMAJ 2017;189(46):E1424-E1425. https://doi.org/10.1503/cmaj.733381
139. Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation 2019;139(18):2113-2125. https://doi. org/10.1161/CIRCULATIONAHA.118.037401
140. Khan TA, Malik VS, Sievenpiper JL. Letter by Khan et al regarding article, ‘Artificially sweetened beverages and stroke, coronary heart disease, and all-cause mortality in the Women’s Health Initiative’. Stroke 2019;50(6):e167-e168. https://doi.org/10.1161/STROKEAHA.119.025571
141. Azad MB, Abou-Setta AM, Chauhan BF, et al. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 2017;189(28):E929-E939. https://doi.org/10.1503/cmaj.161390
142. Toews I, Lohner S, Kullenberg de Gaudry D, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 2019;364:k4718. https://doi. org/10.1136/bmj.k4718
143. Peters JC, Beck J, Cardel M, et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity (Silver Spring) 2016;24(2):297-304. https://doi.org/10.1002/oby.21327
144. Rogers PJ, Hogenkamp PS, de Graaf C, et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond) 2016;40(3):381-394. https://doi.org/10.1038/ijo.2015.177
145. Maersk M, Belza A, Stødkilde-Jørgensen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am J Clin Nutr 2012;95(2):283-289. https://doi.org/10.3945/ajcn.111.022533
146. Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr 2002;76(4):721-729. https://doi.org/10.1093/ajcn/76.4.721
147. Smith JD, Hou T, Hu FB, et al. A comparison of different methods for evaluating diet, physical activity, and long-term weight gain in 3 prospective cohort studies. J Nutr 2015;145(11):2527-2534. https://doi. org/10.3945/jn.115.214171
148. Pan A, Malik VS, Schulze MB, Manson JE, Willett WC, Hu FB. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am J Clin Nutr 2012;95(6):1454-1460. https://doi. org/10.3945/ajcn.111.032698
149. Essman M, Taillie LS, Frank T, Ng SW, Popkin BM, Swart EC. Taxed and untaxed beverage intake by South African young adults after a national sugar-sweetened beverage tax: A before-and-after study. PLoS Med 2021;18(5):e1003574. https://doi.org/10.1371/journal.pmed.1003574
150. Viguiliouk E, Nishi SK, Wolever TM, Sievenpiper JL. Point: Glycemic index an important but oft misunderstood marker of carbohydrate quality. Cereal Foods World 2018;63(4):158-164. https://doi. org/10.1094/CFW-63-4-0158
151. Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev 2007, Issue 3. Art. No.: CD005105. https://doi. org/10.1002/14651858.CD005105.pub2
152. Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health – a systematic review and meta-analysis: The database, study characteristics, and macronutrient intakes. Am J Clin Nutr 2008;87(1):223S-236S. https://doi.org/10.1093/ajcn/87.1.258s
153. Galbete C, Kroger J, Jannasch F, et al. Nordic diet, Mediterranean diet, and the risk of chronic diseases: The EPIC-Potsdam study. BMC Med 2018;16(1):99. https://doi.org/10.1186/s12916-018-1082-y
154. Roswall N, Sandin S, Lof M, et al. Adherence to the healthy Nordic food index and total and
cause-specific mortality among Swedish women. Eur J Epidemiol 2015;30(6):509-517. https://doi.
org/10.1007/s10654-015-0021-x
155. Mithril C, Dragsted LO, Meyer C, et al. Dietary composition and nutrient content of the New Nordic Diet. Public Health Nutr 2013;16(5):777-785. https://doi.org/10.1017/S1368980012004521
156. Astbury NM, Piernas C, Hartmann-Boyce J, Lapworth S, Aveyard P, Jebb SA. A systematic review and meta-analysis of the effectiveness of meal replacements for weight loss. Obes Rev 2019;20(4):569-587. https://doi.org/10.1111/obr.12816
157. Heymsfield SB, van Mierlo CAJ, van der Knaap HCM, et al. Weight management using a meal replacement strategy: Meta and pooling analysis from six studies. Int J Obes Relat Metab Disord 2003;27(5):537-549. https://doi.org/10.1038/sj.ijo.0802258
158. Röhling M, Stensitzky A, Oliveira CLP, et al. Effects of a protein-rich, low-glycaemic meal replacement on changes in dietary intake and body weight following a weight-management intervention – the ACOORH trial. Nutrients 2021;13(2):376. https://doi.org/10.3390/nu13020376
159. Halle M, Röhling M, Banzer W, et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention alone in patients with overweight or obesity and accompanied cardiovascular risk factors – the ACOORH trial. Eur J Clin Nutr 2021;75(4):661-669. https://doi.org/10.1038/s41430- 020-00783-4
160. Guo X, Xu Y, He H, et al. Effects of a meal replacement on body composition and metabolic parameters among subjects with overweight or obesity. J Obes 2018;2018:2837367. https://doi. org/10.1155/2018/2837367
161. Wadden TA, West DS, Neiberg RH, et al. One-year weight losses in the Look AHEAD study: Factors associated with success. Obesity (Silver Spring) 2009;17(4):713-722. https://doi.org/10.1038/ oby.2008.637
162. Brown A, Leeds AR. Very low-energy and low-energy formula diets: Effects on weight loss, obesity co-morbidities and type 2 diabetes remission – an update on the evidence for their use in clinical practice. Nutr Bull 2019;44(1):7-24. https://doi.org/10.1111/nbu.12372
role of exercise and protein in preserving skeletal muscle mass. Curr Opin Clin Nutr Metab Care 2023;26(6):521-527. https://doi.org/10.1097/MCO.0000000000000980
164. Sumithran P, Prendergast LA, Haywood CJ, Houlihan CA, Proietto J. Review of 3-year outcomes of a very- low-energy diet-based outpatient obesity treatment programme. Clin Obes 2016;6(2):101-107. https://doi. org/10.1111/cob.12135
165. Cho Y, Hong N, Kim KW, et al. The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: A systematic review and meta-analysis. J Clin Med 2019;8(10):1645. https://doi. org/10.3390/jcm8101645
166. Enríquez Guerrero A, San Mauro Martín I, Garicano Vilar E, Camina Martín MA. Effectiveness of an intermittent fasting diet versus continuous energy restriction on anthropometric measurements, body composition and lipid profile in overweight and obese adults: A meta-analysis. Eur J Clin Nutr 2021;75(7):1024-1039. https://doi.org/10.1038/s41430-020-00821-1
167. Park J, Seo YG, Paek YJ, Song HJ, Park KH, Noh HM. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism 2020;111:154336. https://doi. org/10.1016/j.metabol.2020.154336
168. Yan S, Wang C, Zhao H, et al. Effects of fasting intervention regulating anthropometric and metabolic parameters in subjects with overweight or obesity: A systematic review and meta-analysis. Food Funct 2020;11(5):3781-3799. https://doi.org/10.1039/d0fo00287a
169. Headland ML, Clifton PM, Keogh JB. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int J Obes (Lond) 2019;43(10):2028-2036. https://doi.org/10.1038/s41366-018-0247-2
170. Vitale R, Kim Y. The effects of intermittent fasting on glycemic control and body composition in adults with obesity and type 2 diabetes: A systematic review. Metab Syndr Relat Disord 2020;18(10):450-461. https://doi.org/10.1089/met.2020.0048
171. Welton S, Minty R, O’Driscoll T, et al. Intermittent fasting and weight loss: Systematic review. Can Fam Physician 2020;66(2):117-125.
172. RomanYM,DominguezMC,EasowTM,PasupuletiV,WhiteCM,HernandezAV.Effectsofintermittent versus continuous dieting on weight and body composition in obese and overweight people: A systematic review and meta-analysis of randomized controlled trials. Int J Obes (Lond) 2019;43(10):2017–2027. https://doi.org/10.1038/s41366-018-0204-0
173. Sundfør TM, Tonstad S, Svendsen M. Effects of intermittent versus continuous energy restriction for weight loss on diet quality and eating behavior: A randomized trial. Eur J Clin Nutr 2019;73(7):1006-1014. https://doi.org/10.1038/s41430-018-0370-0
174. CooperAJ,SharpSJ,LentjesMA,etal.Aprospectivestudyoftheassociationbetweenquantityandvariety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012;35(6):1293-1300. https:// doi.org/10.2337/dc11-2388
175. Blanco Mejia S, Kendall CWC, Viguiliouk E, et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014;4(7):e004660. https://doi.org/10.1136/bmjopen-2013-004660
176. Flores-Mateo G, Rojas-Rueda D, Basora J, Ros E, Salas-Salvado J. Nut intake and adiposity: Meta-analysis of clinical trials. Am J Clin Nutr 2013;97(6):1346-1355. https://doi.org/10.3945/ajcn.111.031484
177. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am J Clin Nutr 2014;100(1):278-288. https://doi.org/10.3945/ajcn.113.076901
178. Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016;353:i2716. https://doi.org/10.1136/bmj.i2716
179. Bao L, Cai X, Xu M, Li Y. Effect of oat intake on glycaemic control and insulin sensitivity: A meta-analysis of randomised controlled trials. Br J Nutr 2014;112(3):457-466. https://doi.org/10.1017/S0007114514000889
180. Gijsbers L, Ding EL, Malik VS, de Goede J, Geleijnse JM, Soedamah-Muthu SS. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am J Clin Nutr
2016;103(4):1111-1124. https://doi.org/10.3945/ajcn.115.123216
181. Imamura F, Fretts A, Marklund M, et al. Fatty acid biomarkers of dairy fat consumption and incidence of
type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med 2018;15(10):e1002670. https://
doi.org/10.1371/journal.pmed.1002670
182. GodosJ,TieriM,GhelfiF,etal.Dairyfoodsandhealth:Anumbrellareviewofobservationalstudies.IntJ Food Sci Nutr 2020;71(2):138-151. https://doi.org/10.1080/09637486.2019.1625035
183. Michie S, Ashford S, Sniehotta FF, Dombrowski SU, Bishop A, French DP. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO-RE taxonomy. Psychol Health 2011;26(11):1479-1498. https://doi.org/10.1080/08870446.201 0.540664
184. Diabetes Prevention Program Research Group; Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes study. Lancet 2009;374(9702):1677-1686. https://doi.org/10.1016/s0140-6736(09)61457-4
185. PanX-R,LiG-W,HuY-H,etal.EffectsofdietandexerciseinpreventingNIDDMinpeoplewithimpaired glucose tolerance: The Da Qing IGT and Diabetes study. Diabetes Care 1997;20(4):537-544. https://doi. org/10.2337/diacare.20.4.537
186. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344(18):1343-1350. https://doi. org/10.1056/NEJM200105033441801
187. LindstromJ,PeltonenM,ErikssonJG,etal.;FinnishDiabetesPreventionStudy(DPS).Improvedlifestyle and decreased diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 2013;56(2):284–293. https://doi.org/10.1007/s00125-012-2752-5
188. Catley D, Puoane T, Goggin K, et al. Adapting the Diabetes Prevention Program for low- and middle- income countries: Preliminary implementation findings from Lifestyle Africa. Transl Behav Med 2020;10(1):46-54. https://doi.org/10.1093/tbm/ibz187
189. CatleyD,PuoaneT,TsolekileL,etal.EvaluationofanadaptedversionoftheDiabetesPreventionProgram for low- and middle-income countries: A cluster randomized trial to evaluate ‘Lifestyle Africa’ in South Africa. PLoS Med 2022;19(4):e1003964. https://doi.org/10.1371/journal.pmed.1003964
190. WarrenJM,SmithN,AshwellM.Astructuredliteraturereviewontheroleofmindfulness,mindfuleating and intuitive eating in changing eating behaviours: Effectiveness and associated potential mechanisms. Nutr Res Rev 2017;30(2):272-283. https://doi.org/10.1017/s0954422417000154
191. Dugmore JA, Winten CG, Niven HE, Bauer J. Effects of weight-neutral approaches compared with traditional weight-loss approaches on behavioral, physical, and psychological health outcomes: A systematic review and meta-analysis. Nutr Rev 2020;78(1):39-55. https://doi.org/10.1093/nutrit/nuz020
192. Ulian MD, Pinto AJ, de Morais Sato P, et al. Effects of a new intervention based on the Health at Every Size approach for the management of obesity: The ‘Health and Wellness in Obesity’ study. PLoS ONE 2018;13(7):e0198401. https://doi.org/10.1371/journal.pone.0198401
193. Clifford D, Ozier A, Bundros J, Moore J, Kreiser A, Morris MN. Impact of non-diet approaches on attitudes, behaviors, and health outcomes: A systematic review. J Nutr Educ Behav 2015;47(2):143-155. e141. https://doi.org/10.1016/j.jneb.2014.12.002
194. Ruffault A, Czernichow S, Hagger MS, et al. The effects of mindfulness training on weight-loss and health- related behaviours in adults with overweight and obesity: A systematic review and meta-analysis. Obes Res Clin Pract 2017;11(5 Suppl 1):90-111. https://doi.org/10.1016/j.orcp.2016.09.002
195. Katterman SN, Kleinman BM, Hood MM, Nackers LM, Corsica JA. Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: A systematic review. Eat Behav 2014;15(2):197-204. https://doi.org/10.1016/j.eatbeh.2014.01.005
196. O’Reilly GA, Cook L, Spruijt-Metz D, Black DS. Mindfulness-based interventions for obesity-related eating behaviours: A literature review. Obes Rev 2014;15(6):453-461. https://doi.org/10.1111/obr.12156
197. Carriere K, Khoury B, Gunak MM, Knauper B. Mindfulness-based interventions for weight loss: A systematic review and meta-analysis. Obes Rev 2018;19(2):164-177. https://doi.org/10.1111/obr.12623
198. Rogers JM, Ferrari M, Mosely K, Lang CP, Brennan L. Mindfulness-based interventions for adults who are overweight or obese: A meta-analysis of physical and psychological health outcomes. Obes Rev 2017;18(1):51-67. https://doi.org/10.1111/obr.12461
199. Wharton S, Lau DCW, Vallis M, et al. Obesity in adults: A clinical practice guideline. CMAJ 2020;192(31):E875-E891. https://doi.org/10.1503/cmaj.191707
200. Cardel MI, Newsome FA, Pearl RL, et al. Patient-centered care for obesity: How health care providers can treat obesity while actively addressing weight stigma and eating disorder risk. J Acad Nutr Diet 2022;122(6):1089-1098. https://doi.org/10.1016/j.jand.2022.01.004
201. Peterson LA, Cheskin LJ, Furtado M, et al. Malnutrition in bariatric surgery candidates: Multiple micronutrient deficiencies prior to surgery. Obes Surg 2016;26(4):833-838. https://doi.org/10.1007/ s11695-015-1844-y
202. Fieber JH, Sharoky CE, Wirtalla C, Williams NN, Depmsey DT, Kelz RR. The malnourished patient with obesity: A unique paradox in bariatric surgery. J Surg Res 2018;232:456-463. https://doi.org/10.1016/j. jss.2018.06.056
203. MajorP,MalczakP,WysockiM,etal.Bariatricpatients’nutritionalstatusasariskfactorforpostoperative complications, prolonged length of hospital stay and hospital readmission: A retrospective cohort study. Int J Surg 2018;56:210-214. https://doi.org/10.1016/j.ijsu.2018.06.022
204. Johnson Stoklossa CA, Sharma AM, Forhan M, Siervo M, Padwal RS, Prado CM. Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab 2017;2017:7307618. https://doi.org/10.1155/2017/7307618
205. Godziuk K, Prado CM, Woodhouse LJ, Forhan M. Prevalence of sarcopenic obesity in adults with end- stage knee osteoarthritis. Osteoarthritis Cartilage 2019;27(12):1735-1745. https://doi.org/10.1016/j. joca.2019.05.026
206. Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom KA, Greiman L. American Society for Metabolic and Bariatric Surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: Micronutrients. Surg Obes Relat Dis 2017;13(5):727-741. https://doi.org/10.1016/j.soard.2016.12.018
207. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72(3):690-693. https://doi.org/10.1093/ajcn/72.3.690
208. Drincic AT, Armas LA, Van Diest EE, et al. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 2012;20(7):1444-1448. https://doi.org/10.1038/ oby.2011.404
209. Golzarand M, Hollis BW, Mirmiran P, Wagner CL, Shab-Bidar S. Vitamin D supplementation and body fat mass: A systematic review and meta-analysis. Eur J Clin Nutr 2018;72(10):1345-1357. https://doi. org/10.1038/s41430-018-0132-z
210. Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr 2016;104(4):1151-1159. https://doi.org/10.3945/ajcn.116.136879
211. Rafiq S, Jeppesen PB. Body mass index, vitamin D, and type 2 diabetes: A systematic review and meta- analysis. Nutrients 2018;10(9):1182. https://doi.org/10.3390/nu10091182
212. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2014;15(6):528-537. https://doi.org/10.1111/obr.12162
213. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JPA. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014;348:g2035. https://doi.org/10.1136/bmj.g2035
214. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J Clin Endocrinol Metab 2011;96(1):53-58. https://doi.org/10.1210/jc.2010-2704
215. Kaur J, Khare S, Sizar O, et al. Vitamin D deficiency. Treasure Island, Fla.: StatPearls Publishing, 2018. https://www.ncbi.nlm.nih.gov/books/NBK532266/ (accessed 3 February 2025).
216. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96(7):1911- 1930. https://doi.org/10.1210/jc.2011-0385
217. Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F. Obesity and iron deficiency: A quantitative meta- analysis. Obes Rev 2015;16(12):1081-1093. https://doi.org/10.1111/obr.12323
218. Aroda VR, Edelstein SL, Goldberg RB, et al. Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab 2016;101(4):1754-1761. https:// doi.org/10.1210/jc.2015-3754
219. Maguire D, Talwar D, Shiels PG, McMillan D. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clin Nutr ESPEN 2018;25:8-17. https://doi. org/10.1016/j.clnesp.2018.02.007
220. WiebeN,FieldCJ,TonelliM.AsystematicreviewofthevitaminB12,folateandhomocysteinetriadacross body mass index. Obes Rev 2018;19(11):1608-1618. https://doi.org/10.1111/obr.12724
221. HayP,MitchisonD.Eatingdisordersandobesity:Thechallengeforourtimes.Nutrients2019;11(5):1055.
https://doi.org/10.3390/nu11051055
222. Puhl R, Suh Y. Stigma and eating and weight disorders. Curr Psychiatry Rep 2015;17(3):552. https://doi.
org/10.1007/s11920-015-0552-6
223. Polivy J, Herman CP. Dieting and binging. A causal analysis. Am Psychol 1985;40(2):193-201. https://doi.
org/10.1037//0003-066x.40.2.193
224. Keel PK, Baxter MG, Heatherton TF, Joiner TE Jr. A 20-year longitudinal study of body weight, dieting, and eating disorder symptoms. J Abnorm Psychol 2007;116(2):422-432. https://doi.org/10.1037/0021- 843X.116.2.422
225. Ayton A, Ibrahim A. The Western diet: A blind spot of eating disorder research? – a narrative review and recommendations for treatment and research. Nutr Rev 2020;78(7):579-596. https://doi.org/10.1093/ nutrit/nuz089
226. Da Luz FQ, Hay P, Gibson AA, et al. Does severe dietary energy restriction increase binge eating in overweight or obese individuals? A systematic review. Obes Rev 2015;16(8):652-665. https://doi. org/10.1111/obr.12295
227. Wadden TA, Foster GD, Sarwer DB, et al. Dieting and the development of eating disorders in obese women: Results of a randomized controlled trial. Am J Clin Nutr 2004;80(3):560-568. https://doi. org/10.1093/ajcn/80.3.560
228. National Task Force on the Prevention and Treatment of Obesity. Dieting and the development of eating disorders in overweight and obese adults. Arch Intern Med 2000;160(17):2581-2589. https://doi. org/10.1001/archinte.160.17.2581
229. Abbott S, Dindol N, Tahrani AA, Piya MK. Binge eating disorder and night eating syndrome in adults with type 2 diabetes: A systematic review. J Eat Disord 2018;6:36. https://doi.org/10.1186/ s40337-018-0223-1
230. Raevuori A, Suokas J, Haukka J, et al. Highly increased risk of type 2 diabetes in patients with binge eating disorder and bulimia nervosa. Int J Eat Disord 2015;48(6):555-562. https://doi.org/10.1002/ eat.22334
231. Jebeile H, Libesman S, Melville H, et al. Eating disorder risk during behavioral weight management in adults with overweight or obesity: A systematic review with meta-analysis. Obes Rev 2023;24(6):e13561. https://doi.org/10.1111/obr.13561
232. Hart LM, Granillo MT, Jorm AF, et al. Unmet need for treatment in the eating disorders: A systematic review of eating disorder specific treatment seeking among community cases. Clin Psychol Rev 2011;31(5):727-735. https://doi.org/10.1016/j.cpr.2011.03.004
233. Mullen G, Dowling C, Doyle J, O’Reilly G. Experiences of compassion focused therapy in eating disorder recovery: A qualitative model. Couns Psychother Res 2020;20(2):248-262. https://doi. org/10.1002/capr.12283
234. Sánchez A, Rojas P, Basfi-Fer K, et al. Micronutrient deficiencies in morbidly obese women prior to bariatric surgery. Obes Surg 2016;26(2):361-368. https://doi.org/10.1007/s11695-015-1773-9
235. Sherf Dagan S, Zelber-Sagi S, Webb M, et al. Nutritional status prior to laparoscopic sleeve gastrectomy surgery. Obes Surg 2016;26(9):2119-2126. https://doi.org/10.1007/s11695-016-2064-9
236. Sadhai P, Coetzee A, Conradie-Smit M, et al. Nutritional deficiency in South African adults scheduled for bariatric surgery. Front Endocrinol (Lausanne) 2023;14:1120531. https://doi.org/10.3389/ fendo.2023.1120531
237. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient – 2013 update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 2013;21(Suppl 1):S1-27. https://doi. org/10.1002/oby.20461
238. Rubino F, Cummings DE, Eckel RH, et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol 2025;13(3):221-262. https://doi.org/10.1016/S2213-8587(24)00316-4
239. Canada Health. Canada’s food guide. 2019. https://food-guide.canada.ca/en/ (accessed 21 April 2022).
240. Canada Health. Canada’s dietary guidelines: Resources for health professionals and policy makers.
2019. https://food-guide.canada.ca/en/guidelines (accessed 21 April 2022).
241. Wright G, Dawson B, Jalleh G, Law S. Impact of compliance on weight loss and health profile in a very
low energy diet program. Aust Fam Physician 2010;39(1):49-52.
242. Mulholland Y, Nicokavoura E, Broom J, Rolland C. Very-low-energy diets and morbidity:
A systematic review of longer-term evidence. Br J Nutr 2012;108(5):832-851. https://doi.org/10.1017/
S0007114512001924
243. Benton D, Young HA. Reducing calorie intake may not help you lose body weight. Perspect Psychol Sci 2017;12(5):703-714. https://doi.org/10.1177/1745691617690878
244. Winkler JK, Schultz JH, Woehning A, et al. Effectiveness of a low-calorie weight loss program in moderately and severely obese patients. Obes Facts 2013;6(5):469-480. https://doi. org/10.1159/000355822
245. Pal S, Ho S, Gahler RJ, Wood S. Effect on insulin, glucose and lipids in overweight/obese Australian adults of 12 months consumption of two different fibre supplements in a randomised trial. Nutrients 2017;9(2):91. https://doi.org/10.3390/nu9020091
246. Thompson SV, Hannon BA, An R, Holscher HD. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2017;106(6):1514-1528. https:// doi.org/10.3945/ajcn.117.163246
247. Jiao J, Xu JY, Zhang W, Han S, Qin LQ. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: A meta-analysis of randomized controlled trials. Int J Food Sci Nutr 2015;66(1):114-119. https://doi.org/10.3109/09637486.2014.959898
248. Hu X, Gao J, Zhang Q, et al. Soy fiber improves weight loss and lipid profile in overweight and obese adults: A randomized controlled trial. Mol Nutr Food Res 2013;57(12):2147-2154. https://doi. org/10.1002/mnfr.201300159
249. Solah VA, Kerr DA, Hunt WJ, et al. Effect of fibre supplementation on body weight and composition, frequency of eating and dietary choice in overweight individuals. Nutrients 2017;9(2):149. https://doi. org/10.3390/nu9020149
250. Santos NC, de Araujo LM, de Luca Canto G, Guerra ENS, Coelho MS, Borin MF. Metabolic effects of aspartame in adulthood: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2018;58(12):2068-2081. https://doi.org/10.1080/10408398.2017.1304358
251. Meckling KA, Sherfey R. A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the metabolic syndrome in overweight and obese women. Appl Physiol Nutr Metab 2007;32(4):743-752. https://doi.org/10.1139/H07-059
252. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. Effects of energy-restricted high- protein, low-fat compared with standard-protein, low-fat diets: A meta-analysis of randomized controlled trials. Am J Clin Nutr 2012;96(6):1281-1298. https://doi.org/10.3945/ajcn.112.044321
253. Evans EM, Mojtahedi MC, Thorpe MP, Valentine RJ, Kris-Etherton PM, Layman DK. Effects of protein intake and gender on body composition changes: A randomized clinical weight loss trial. Nutr Metab (Lond) 2012;9(1):55. https://doi.org/10.1186/1743-7075-9-55
254. Parr EB, Coffey VG, Cato LE, Phillips SM, Burke LM, Hawley JA. A randomized trial of high-dairy- protein, variable-carbohydrate diets and exercise on body composition in adults with obesity. Obesity (Silver Spring) 2016;24(5):1035-1045. https://doi.org/10.1002/oby.21451
255. Ankarfeldt MZ, Angquist L, Jakobsen MU, et al. Interactions of dietary protein and adiposity measures in relation to subsequent changes in body weight and waist circumference. Obesity (Silver Spring) 2014;22(9):2097-2103. https://doi.org/10.1002/oby.20812
256. Maki KC, Rains TM, Kaden VN, Raneri KR, Davidson MH. Effects of a reduced-glycemic-load diet on body weight, body composition, and cardiovascular disease risk markers in overweight and obese adults. Am J Clin Nutr 2007;85(3):724-734. https://doi.org/10.1093/ajcn/85.3.724
257. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS. Effects of a low-glycemic load vs low-fat diet in obese young adults: A randomized trial. JAMA 2007;297(19):2092-2102. https://doi. org/10.1001/jama.297.19.2092
258. Shiau JY, So DYF, Dent RR. Effects on diabetes medications, weight and glycated hemoglobin among adult patients with obesity and type 2 diabetes: 6-month observations from a full meal replacement, low-calorie diet weight management program. Can J Diabetes 2018;42(1):56-60. https://doi. org/10.1016/j.jcjd.2017.03.006
259. Koohkan S, Schaffner D, Milliron BJ, et al. The impact of a weight reduction program with and without meal-replacement on health related quality of life in middle-aged obese females. BMC Women’s Health 2014;14(1):45. https://doi.org/10.1186/1472-6874-14-45
260. Daubenmier J, Moranc PJ, Kristeller J, et al. Effects of a mindfulness-based weight loss intervention in adults with obesity: A randomized clinical trial. Obesity (Silver Spring) 2016;24(4):794-804. https:// doi.org/10.1002/oby.21396
261. Mason AE, Epel ES, Kristeller J, et al. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: Data from the SHINE randomized controlled trial. J Behav Med 2016;39(2):201-213. https://doi.org/10.1007/s10865-015-9692-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M Conradie-Smit, V R Fourie, W May

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licensing Information
The SAMJ is published under an Attribution-Non Commercial International Creative Commons Attribution (CC-BY-NC 4.0) License. Under this license, authors agree to make articles available to users, without permission or fees, for any lawful, non-commercial purpose. Users may read, copy, or re-use published content as long as the author and original place of publication are properly cited.
Exceptions to this license model is allowed for UKRI and research funded by organisations requiring that research be published open-access without embargo, under a CC-BY licence. As per the journals archiving policy, authors are permitted to self-archive the author-accepted manuscript (AAM) in a repository.
Publishing Rights
Authors grant the Publisher the exclusive right to publish, display, reproduce and/or distribute the Work in print and electronic format and in any medium known or hereafter developed, including for commercial use. The Author also agrees that the Publisher may retain in print or electronic format more than one copy of the Work for the purpose of preservation, security and back-up.




