Molecular diagnostics improve the yield of diagnosis of community-acquired pneumonia and multidrug-resistant pathogens in hospitalised patients with HIV in a low-income setting

Main Article Content

W Worodria
A Andama
I Sanyu
D Orit
R Kwizera
A Sessolo
P Byanyima
J Zawedde
S Kaswabuli
E Mande
C Mukashyaka
F Semitala
A Cattamanchi
D R Boulware
L Huang

Abstract





Background. Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality in people with HIV (PWH), and antimicrobial resistance (AMR) leads to poor treatment outcomes. Better tests are required to overcome the low sensitivity of sputum Gram stain and culture for pneumonia diagnosis. Molecular diagnostic tests rapidly detect respiratory pathogens and markers of AMR, but few studies have examined their role in PWH.


Objectives. To investigate the additional yield of the Biofire FilmArray Pneumonia Panel plus (FilmArrayPN-PCR), an automated nested multiplex polymerase chain reaction system, over culture for diagnosis of CAP, and determine clinical predictors of AMR in PWH.


Methods. We enrolled adult PWH hospitalised with cough <2 months in a prospective cohort in Kampala, Uganda. Participants provided expectorated sputum samples for testing by FilmArrayPN-PCR and culture. We performed drug susceptibility testing of cultured sputum isolates and detection of genetic markers of AMR on sputum by FilmArrayPN-PCR.


Results. The 107 participants enrolled had a median (interquartile range) age of 40 (31 - 46) years, 50.5% (n=54/107) were female, and 74.8% (n=80/107) had recent antibiotic use. The median duration of cough was 3 (1 - 4) weeks. FilmArrayPN-PCR increased the detection of respiratory pathogens by 64.5% (95% confidence interval (CI) 54.8 - 73.1; p<0.001) and detected AMR in 25.2% (n=27/107). Baseline room air oxygen saturation <92% (adjusted odds ratio (aOR) 9.20; 95% CI 2.52 - 33.57; p=0.001) and prior antibiotic use (aOR 4.14; 95% CI 1.04 - 16.51; p=0.04) were independent predictors of AMR.


Conclusion. FilmArrayPN-PCR increased the diagnostic yield of pathogens, and a low baseline oxygen saturation (<92%) and prior antibiotic use were associated with an increased risk of AMR in hospitalised PWH with CAP.





Downloads

Download data is not yet available.

Article Details

Section

Original Research: Articles

How to Cite

1.
Worodria W, Andama A, Sanyu I, Orit D, Kwizera R, Sessolo A, et al. Molecular diagnostics improve the yield of diagnosis of community-acquired pneumonia and multidrug-resistant pathogens in hospitalised patients with HIV in a low-income setting. Afr J Thoracic Crit Care Med [Internet]. 2025 Jun. 4 [cited 2025 Oct. 2];31(2):e2415. Available from: https://samajournals.co.za/index.php/ajtccm/article/view/2415

References

1. Hirschtick RE, Glassroth J, Jordan MC, et al. Bacterial pneumonia in persons infected with the human immunodeficiency virus. Pulmonary Complications of HIV Infection Study Group. N Engl J Med 1995;333(13):845-851. https://doi.org/10.1056/ NEJM199509283331305

2. Garcia Garrido HM, Mak AMR, Wit F, et al. Incidence and risk factors for invasive pneumococcal disease and community-acquired pneumonia in human immunodeficiency virus-infected individuals in a high-income setting. Clin Infect Dis 2020;71(1):41-50. https://doi.org/10.1093/cid/ciz728

3. Cilloniz C, Garcia-Vidal C, Moreno A, Miro JM, Torres A. Community-acquired bacterial pneumonia in adult HIV-infected patients. Expert Rev Anti Infect Ther 2018;16(7):579-588. https://doi.org/10.1080/14787210.2018.1495560

4. Gleckman R, DeVita J, Hibert D, Pelletier C, Martin R. Sputum Gram stain assessment in community-acquired bacteremic pneumonia. J Clin Microbiol 1988;26(5):846-849. https://doi.org/10.1128/jcm.26.5.846-849.1988

5. Kobyakova OS, Deev IA, Vinokurova DA, et al. Is there a real need for sputum culture for community-acquired pneumonia diagnostics? Results from a retrospective study in Russia. Diagnosis (Berl) 2021;8(3):377-381. https://doi.org/10.1515/dx-2020-0027

6. HarrisAM,BramleyAM,JainS,etal.Influenceofantibioticsonthedetectionofbacteria by culture-based and culture-independent diagnostic tests in patients hospitalized with community-acquired pneumonia. Open Forum Infect Dis 2017;4(1):ofx014. https://doi. org/10.1093/ofid/ofx014

7. Lee CC, Lee CH, Hong MY, Tang HJ, Ko WC. Timing of appropriate empirical antimicrobial administration and outcome of adults with community-onset bacteremia. Crit Care 2017;21(1):119. https://doi.org/10.1186/s13054-017-1696-z

8. Yoshimine H, Oishi K, Mubiru F, et al. Community-acquired pneumonia in Ugandan adults: Short-term parenteral ampicillin therapy for bacterial pneumonia. Am J Trop Med Hyg 2001;64(3-4):172-177. https://doi.org/10.4269/ajtmh.2001.64.172

9. WorldHealthOrganization.ThirteenthGeneralProgrammeofWork,2019-2023.WHO/ PRP/18.1. Geneva: WHO, 2019. https://iris.who.int/bitstream/handle/10665/324775/ WHO-PRP-18.1-eng.pdf (accessed 2 April 2025).

10. Ginocchio CC, Garcia-Mondragon C, Mauerhofer B, Rindlisbacher C; and the EME Evaluation Program Collaborative. Multinational evaluation of the BioFire(R) FilmArray(R) Pneumonia plus Panel as compared to standard of care testing. Eur J Clin Microbiol Infect Dis 2021;40(8):1609-1622. https://doi.org/10.1007/s10096-021- 04195-5

11. Bartlett JG, Breiman RF, Mandell LA, File TM Jr. Community-acquired pneumonia in adults: Guidelines for management. The Infectious Diseases Society of America. Clin Infect Dis 1998;26(4):811-838. https://doi.org/10.1086/513953

12. BaudelJL,TankovicJ,DahoumaneR,etal.MultiplexPCRperformedofbronchoalveolar lavage fluid increases pathogen identification rate in critically ill patients with pneumonia: A pilot study. Ann Intensive Care 2014;4:35. https://doi.org/10.1186/ s13613-014-0035-7

13. Murphy CN, Fowler R, Balada-Llasat JM, et al. Multicenter evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol 2020;58(7):e00128-20. https://doi. org/10.1128/JCM.00128-20

14. Gilbert DN, Leggett JE, Wang L, et al. Enhanced detection of community- acquired pneumonia pathogens with the BioFire(R) Pneumonia FilmArray(R) panel. Diagn Microbiol Infect Dis 2021;99(3):115246. https://doi.org/10.1016/j. diagmicrobio.2020.115246

15. MaartensG,GrieselR,DubeF,NicolM,MendelsonM.Etiologyofpulmonaryinfections in human immunodeficiency virus-infected inpatients using sputum multiplex real- time polymerase chain reaction. Clin Infect Dis 2020;70(6):1147-1152. https://doi. org/10.1093/cid/ciz332

16. Collins LF, Havers FP, Tunali A, et al. Invasive nontypeable Haemophilus influenzae infection among adults with HIV in metropolitan Atlanta, Georgia, 2008-2018. JAMA 2019;322(24):2399-2410. https://doi.org/10.1001/jama.2019.18800

17. Park DE, Baggett HC, Howie SRC, et al. Colonization density of the upper respiratory tract as a predictor of pneumonia – Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clin Infect Dis 2017;64(suppl_3):S328-S336. https://doi.org/10.1093/cid/cix104

18. Falsey AR, Walsh EE, Hayden FG. Rhinovirus and coronavirus infection-associated hospitalizations among older adults. J Infect Dis 2002;185(9):1338-1341. https://doi. org/10.1086/339881

19. Jain S, Self WH, Wunderink RG, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 2015;373(5):415-427. https://doi. org/10.1056/NEJMoa1500245

20. Lee SH, Ruan SY, Pan SC, Lee TF, Chien JY, Hsueh PR. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. J Microbiol Immunol Infect 2019;52(6):920-928. https://doi. org/10.1016/j.jmii.2019.10.009

21. Hujer AM, Long SW, Olsen RJ, et al. Predicting β-lactam resistance using whole genome sequencing in Klebsiella pneumoniae: The challenge of β-lactamase inhibitors. Diagn Microbiol Infect Dis 2020;98(3):115149. https://doi.org/10.1016/j. diagmicrobio.2020.115149

22. Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA2015;112(27):E3574-E3581. https://doi. org/10.1073/pnas.1501049112

23. Cao X, Xu X, Zhang Z, Shen H, Chen J, Zhang K. Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Ann Clin Microbiol Antimicrob 2014;13:16. https://doi.org/10.1186/1476-0711-13-16

24. Shindo Y, Ito R, Kobayashi D, et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 2013;188(8):985-995. https://doi.org/10.1164/rccm.201301-0079OC

25. Prina E, Ranzani OT, Polverino E, et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 2015;12(2):153-160. https://doi.org/l10.1513/AnnalsATS.201407-305OC