Response to ‘Commentary on the published position statement regarding the pathogenesis of fetal basal ganglia- thalamic hypoxic-ischaemic injury’ (Anthony et al.)
DOI:
https://doi.org/10.7196/SAMJ.2024.v114i1.1844Keywords:
ganglia-thalamic hypoxic-ischaemic injuryAbstract
-
References
Bhorat I, Buchmann E, Frank K, et al. Causation of term perinatal hypoxic-ischaemic basal ganglia and thalamus injury in the context of cerebral palsy litigation: Position statement. S Afr Med J 2023;113(9):e1063. https://doi.org/10.7196/SAMJ.2023.v113i9.1063
Roland EH, Poskitt K, Rodriguez E, Lupton BA, Hill A. Perinatal hypoxia-ischemic thalamic injury: Clinical features and neuroimaging. Ann Neurol 1998;44(2):161-166. https://doi.org/10.1002/ ana.410440205
Pasternak JF, Gorey MT. The syndrome of acute near-total intrauterine asphyxia in the term infant. Pediatr Neurol 1998(5):18:391-398. https://doi.org/10.1016/s0887-8994(98)00002-2
Sie LTI, van der Knaap MS, Oosting J, de Vries LS, Lafeber HN, Valk J. MR patterns of hypoxic- ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 2000;31(3):128-136. https://doi.org/10.1055/s-2000-7496
Shankaran S, Laptook AR, McDonald SA, et al. Acute perinatal sentinel events, neonatal brain injury pattern, and outcome of infants undergoing a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr 2017;180:275-278. https://doi.org/10.1016/j.jpeds.2016.09.026
Naeye RL, Lin H-M. Determination of the timing of fetal brain damage from hypoxia-ischemia. Am J Obstet Gynecol 2001;184(2):217-224. https://doi.org/10.1067/mob.2001.108996
Nakao M, Nanba Y, Okumura A, et al. Correlation between fetal heart rate evolution patterns and magnetic resonance imaging findings in severe cerebral palsy: A longitudinal study. BJOG 2022;129(9):1574-1582. https://doi.org/10.1111/1471-0528.17089
Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: How data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol 2015;12:14. https://doi.org/10.1186/s12982-015-0037-4
Smith J, Solomons R, Vollmer L, et al. Intrapartum basal ganglia-thalamic pattern injury and radiologically termed ‘acute profound hypoxic-ischemic brain injury’ are not synonymous. Am J Perinatol 2022;39(10):1124-1131. https://doi.org/10.1055/s-0040-1721692
Buchmann E, Bhorat I. Basal ganglia-thalamic pattern injury and subacute gradual-onset intrapartum hypoxia: A response. Am J Perinatol 2022;39(16):1742-1744. https://doi. org/10.1055/s-0041-1739428
Nakao M, Okumura A, Hasegawa J, et al. Fetal heart rate pattern in term or near-term cerebral palsy: A nationwide study. Am J Obstet Gynecol 2020;223(6):907:e1-907.E13 https://doi.org/10.1016/j. ajog.2020.05.059
American College of Obstetricians and Gynecologists. American Academy of Pediatrics. Role of neuroimaging. Neonatal Encephalopathy and Neurologic Outcome, 2nd ed. (reaffirmed 2019). Washington, DC: American College of Obstetricians, 2014.
Misser SK, Lotz JW, Zaharie S-D, Mchunu N, Archary M, Barkovich AJ. A proposed magnetic resonance imaging grading system for the spectrum of central neonatal parasagittal hypoxic- ischaemic brain injury. Insights Imaging 2022;13:11. https://doi.org/10.1186/s13244-021-01139-7
Volpe JJ, Inder TE, Darras BT, et al., eds. Volpe’s Neurology of the Newborn, 6th ed. Philadelphia, PA: Elsevier, 2018.
Wisnowski JL, Wintermark P, Bonfiacio SL, et al. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med 2021;26(5):101304. https://doi.org/10.1016/j. siny.2021.101304
Rennie J, Rosenbloom L. How long have we got to get the baby out? A review of the effects of acute and profound intrapartum hypoxia and ischaemia. Obstet Gynaecol 2011;13(3):169-174. https://doi. org/10.1576/toag.13.3.169.27669
Baxter P. Markers of perinatal hypoxia-ischaemia and neurological injury: Assessing the impact of insult duration. Dev Med Child Neurol 2020;62(5):563-568. https://doi.org/10.1111/dmcn.14421 18. BadawiN,KurinczukJJ,KeoghJM,etal.Intrapartumriskfactorsfornewbornencephalopathy:The Western Australian case-control study. BMJ 1998;317(7172):1554-1558. https://doi.org/10.1136/
bmj.317.7172.1554
Badawi N, Kurinczuk JJ, Keogh JM, et al. Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 1998;317(7172):1549-1553. https://doi.org/10.1136/ bmj.317.7172.1549
Minagawa K, Tsuji Y, Ueda H, et al. Possible correlation between high levels of IL-18 in the cord blood of pre-term infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine 2002;17(3):164-170. https://doi.org/10.1006/cyto.2001.0988
Grether JK. Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997;278(3):207-211. https://doi.org/10.1001/jama.1997.03550030047032
Wu YW, Escobar GJ, Grether JK, Croen LA, Greene JD, Newman TB. Chorioamnionitis and cerebral palsy in term and near term infants. JAMA 2003;290(20):2677-2684. https://doi:10.1001/ jama.290.20.2677
Figueras F, Caradeux J, Crispi F, Eixarch E, Peguero A, Gratacos E. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol 2018;218(suppl 2):S790-S802.e1. https:// doi.org/10.1016/j.ajog.2017.12.003
Khalil A, Morales-Rosello J, Townsend R, et al. Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol 2016;47(1):74-80. https://doi.org/10.1002/uog.15729
MacLennanA,ThompsonSC.Cerebralpalsy:Causes,pathwaysandtheroleofgeneticvariants.Am J Obstet Gynecol 2015;213(6):779-788. https://doi.org/10.1016/j.ajog.2015.05.034
CalkavurS,AkisuM,OlukmanO,etal.Geneticfactorsthatinfluenceshort-termneurodevelopmental outcome in term hypoxic-ischaemic encephalopathic neonates. J Int Med Res 2011;39:1744-1756. https://doi.org/10.1177/147323001103900517
Hemminki K, Li X, Sundquist K, Sundquist J. High familial risk for cerebral palsy implicates partial heritable aetiology. Paediatr Perinat Epidemiol 2007;21(3):235-241. https://doi.org/10.1111/j.1365- 3016.2007.00798.x
McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S. Whole- exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatr 2015;20(2):176-182. https://doi.org/10.1038/mp.2014.189
Zeisler H, Llurba E, Chantraine F, et al., Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med 2016;374(1):13-22. https://doi.org/10.1056/NEJMoa1414838
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licensing Information
The SAMJ is published under an Attribution-Non Commercial International Creative Commons Attribution (CC-BY-NC 4.0) License. Under this license, authors agree to make articles available to users, without permission or fees, for any lawful, non-commercial purpose. Users may read, copy, or re-use published content as long as the author and original place of publication are properly cited.
Exceptions to this license model is allowed for UKRI and research funded by organisations requiring that research be published open-access without embargo, under a CC-BY licence. As per the journals archiving policy, authors are permitted to self-archive the author-accepted manuscript (AAM) in a repository.
Publishing Rights
Authors grant the Publisher the exclusive right to publish, display, reproduce and/or distribute the Work in print and electronic format and in any medium known or hereafter developed, including for commercial use. The Author also agrees that the Publisher may retain in print or electronic format more than one copy of the Work for the purpose of preservation, security and back-up.